Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có 5= 5 x 1
=> \(\hept{\begin{cases}2x+3=1\\y+1=5\end{cases}}\)=> \(\hept{\begin{cases}2x=-2\\y=4\end{cases}}\)=>\(\hept{\begin{cases}x=-1\\y=4\end{cases}}\)
Th2
\(\hept{\begin{cases}2x+3=5\\y+1=1\end{cases}}\)=> \(\hept{\begin{cases}2x=2\\y=0\end{cases}}\)=> \(\hept{\begin{cases}x=1\\y=0\end{cases}}\)
a)Ta có: 3=1.3=3.1=(-1).(-3)=(-3).(-1)
Do đó ta có bảng sau:
x+4 | 1 | 3 | -1 | -3 |
y+3 | 3 | 1 | -3 | -1 |
x | -3 | -1 | -5 | -7 |
y | 0 | -2 | -6 | -4 |
Vậy cặp (x;y) TM là:(-3;0)(-1'-2)(-5;-6)(-7;-4)
b)Ta có:12=1.12=12.1=3.4=4.3=2.6=6.2=(-1).(-12)=(-12).(-1)=(-3).(-4)=(-4).(-3)=(-2).(-6)=(-6).(-2)
Do đó ta có bảng sau:
2x+1 | 1 | 12 | -1 | -12 | 3 | 4 | -3 | -4 | 2 | 6 | -2 | -6 |
y-3 | 12 | 1 | -12 | -1 | 4 | 3 | -4 | -3 | 6 | 2 | -6 | -2 |
2x | 0 | 13 | -2 | -13 | 2 | 3 | -4 | -5 | 1 | 5 | -3 | -7 |
x | 0 | ko TM | -1 | ko TM | 1 | ko TM | -2 | ko TM | ko TM | ko TM | ko TM | ko TM |
y | 15 | 4 | -9 | 2 | 7 | 6 | -1 | -6 | 9 | 5 | -3 | 1 |
Vậy cặp (x;y) TM là:(0;15)(-1;-9)(1;7)(-2;-1)
\(\left|x+\frac{1}{2}\right|+\left|y-\frac{3}{4}\right|+\left|z+1\right|=0\)
\(\Rightarrow\hept{\begin{cases}\left|x+\frac{1}{2}\right|=0\\\left|y-\frac{3}{4}\right|=0\\\left|z+1\right|=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=0-\frac{1}{2}\\y=0+\frac{3}{4}\\z=0-1\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{-1}{2}\\y=\frac{3}{4}\\z=-1\end{cases}}\)
ta có \(\frac{x}{3}=\frac{y}{4}=\frac{z}{7}\)và x.y=48
xét \(\frac{x}{3}=\frac{y}{4}\)
đặt K vào \(\frac{x}{3}=\frac{y}{4}\)
ta có
\(\frac{x}{3}=K\Rightarrow x=3K\)
\(\frac{y}{4}=K\Rightarrow y=4K\)
\(x.y=48\)
\(3K.4K=48\)
\(12K^2=48\)
\(K^2=48:12=4\)
\(K^2=2^2\Rightarrow K=2\)
*\(\frac{x}{3}=2\Rightarrow x=2.3=6\)
*\(\frac{y}{4}=2\Rightarrow y=2.4=8\)
*\(\frac{z}{7}=2\Rightarrow z=2.7=14\)
vậy \(x=6;y=8;z=14\)
dat \(\frac{x}{3}=\frac{y}{4}=\frac{z}{7}=k\) => x=3k,y=4k,z=7k
Thay vvao ta dc: x.y=48
3k.4k=48
12.\(k^2\)=48
k^2=4
k=4,-4
TH1: k=a
=> x=3k=>x=12
y va z lam tuong tu nhe
Con TH2 la -4
k cho m nha
Bài 1: Tìm x, y, z
\(\frac{x}{3}=\frac{y}{4}=>\frac{x}{3\times3}=\frac{y}{4\times3}=>\frac{x}{9}=\frac{y}{12}\)
\(\frac{y}{3}=\frac{z}{5}=>\frac{y}{3.4}=\frac{z}{5.4}=>\frac{y}{12}=\frac{z}{20}\)
=> \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)
- Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\) -> \(\frac{2x}{2\times9}=\frac{3y}{3\times12}=\frac{z}{20}\) -> \(\frac{2x}{18}=\frac{3y}{36}=\frac{z}{20}\)
-> \(\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)
\(\frac{x}{9}=3\rightarrow x=27\)
\(\frac{y}{12}=3\rightarrow y=36\)
\(\frac{z}{20}=3\rightarrow z=60\)
Vậy x = 27 ; y = 36 ; z = 60
Bài 2 : Tìm x, y:
5x = 2y và x.y = 40
Vì 5x = 2y => \(\frac{x}{2}=\frac{y}{5}\)
Cách 1:
\(\frac{x}{2}=\frac{y}{5}\) và x.y = 40
Đặt \(\frac{x}{2}=\frac{y}{5}\) = k
=> x = 2.k ; y = 5.k
x.y = 40 -> 2k = 5k = 40
-> 10 . \(k^2\) = 40
-> \(k^2\) = 4 -> k = 2 hoặc k = -2
k = 4 ta có : \(\frac{x}{2}=\frac{y}{5}=2->x=4;y=10\)
k = -4 ta có : \(\frac{x}{2}=\frac{y}{5}=-2->x=-4;y=-10\)
Cách 2:
\(\frac{x}{2}=\frac{y}{5}->\frac{x.x}{2}=\frac{x.y}{5}->\frac{x^2}{2}=\frac{40}{5}=\frac{x^2}{2}=8\)
=> \(x^2\) = 8 . 2 = 16 -> x = 4 hoặc -4
x = 4 -> 4.y = 40 => y = 10
x = -4 -> (-4).y = 40 => y = -10
Vậy x = 4 hoặc -4
y = 10 hoặc -10
\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\left(1\right)\\\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)
Từ (1),(2) suy ra \(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}=\frac{2x}{18}=\frac{-3y}{-36}=\frac{z}{15}=\frac{2x-3y+z}{18-\left(-36\right)+15}=\frac{6}{69}=\frac{2}{23}\)Suy ra x =\(\frac{2}{23}\cdot9=\frac{18}{23}\)
\(y=\frac{2}{23}\cdot12=\frac{24}{23}\\ z=\frac{2}{23}.15=\frac{30}{23}\)
NHÂN 2 VÊ BIỂU THỨC VỚI 2 TA ĐƯỢC 4XY+2X+2Y+10
2X(2Y+1)+(2Y+1)=10+1=11
(2X+1)(2Y+1)=11=11x1=-11x-1
TH1 2X+1=11 và 2y+1=1 suy ra x=5.y=0
TH2. 2X+1=1 và 2y+1=11 suy ra x=0 và y=5
TH3. 2X+1=-1 và 2y+1=-11 suy ra x=-1 và y=-6
TH3. 2X+1=-11 và 2y+1=-1 suy ra x=-6 và y=-1
Bài làm:
Ta có: \(x^3y=xy^3+1997\)
\(\Leftrightarrow x^3y-xy^3=1997\)
\(\Leftrightarrow xy\left(x^2-y^2\right)=1997\)
\(\Leftrightarrow xy\left(x-y\right)\left(x+y\right)=1997\)
Mà 1997 là số lẻ
=> x ; y ; x - y ; x + y phải đều lẻ
Mà ta thấy nếu x ; y lẻ => x + y và x - y chẵn
=> \(xy\left(x-y\right)\left(x+y\right)\)chẵn (vô lý) (1)
Nếu x - y ; x + y lẻ
=> Sẽ phải tồn tại x hoặc y chẵn
=> \(xy\left(x-y\right)\left(x+y\right)\)chẵn (vô lý) (2)
Từ (1) và (2)
=> Không tồn tại x, y thỏa mãn phương trình
CRP
Trả lời:
\(x^3y=xy^3+1997\)
\(\Leftrightarrow x^3y-xy^3=1997\)
\(\Leftrightarrow xy.\left(x^2-y^2\right)=1997\)
\(\Leftrightarrow xy.\left(x-y\right).\left(x+y\right)=1997\)
Ta có:\(1997\)là số nguyên tố, \(xy.\left(x-y\right).\left(x+y\right)\)là hợp số
\(\Rightarrow\left(x,y\right)\in\varnothing\)
Vậy không tìm được x và y thỏa mãn đề bài