Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b,Vì (x-5 ) (y-7)=1 nên x-5 và y-7 đều thuộc Ư(1)=[-1,1]
Ta có bảng sau:
x-5 1 -1
y-7 1 -1
x 6 4
y 8 6
Vậy(x,y)=(6,8),(4,6)
Những câu c,d,e làm tương tự.
\(\left(x+1\right)\left(y-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\y-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\y=2\end{cases}}\)
vậy x=-1 và y=2
\(\left(x-5\right)\left(y-7\right)=1\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=1\\y-7=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=6\\y=8\end{cases}}\)
vậy x=6 vs y=8
\(\left(x+4\right)\left(y-2\right)=1\Leftrightarrow\orbr{\begin{cases}x+4=1\\y-2=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-3\\y=3\end{cases}}\)
vậy x=-3 và y=3
bài 1 :
a) x - {x-[(-x-1)]} = 1
=> x -{x -[2x-1]} =1
=> x - {x-2x+1} =1
=> x - ( -1+1)=1
=> x+x-1 = 1
=> 2x = 2
=> x =1
vậy x = 1
b) ( x+5).(x-2)<0
=> x+5 và x-2 là 2 thừa số trái dấu
mà x-2 < x+5
=> x-2 âm => x<2
x+5 dương=> x > -5
=> -5 < x<2
vậy ....
Bài 2 :
( x+1).(xy-1) = 3
vì x,y thuộc Z => x+1 thuộc Z , xy-1 thuộc Z
=> x + 1 avf xy -1 là các ước nguyên của 3
từ đó tìm được các giá trị
+ nếu x = -2 => y=1
+ nếu x = 2 => y =1
+ nếu x = -4 => y =0
b) 3x+4y-xy =15
x.(3-y)+4y = 15 x.(3-y)=15-4y
x.(3-y)=12-4y+3
x.(3-y) = 4.(3-y)+3
x.(3-y)-4.(3-y)=3
vì x,y thuộc Z => 3-y thuộc Z , x-4 thuộc Z
=> 3-y và x-4 là các ước nguyễn của 3
=>.....
ta tìm được các giá trị của x và y
Bài 3:
nếu x = 0 thì 26^x = 1 khác 25^y + 24^z với mọi y, z thuộc N, loại
=> x lớn hơn hoặc = 1
=> 26^x chẵn
mà 25^y lẻ với mọi y thuộc N
=> 24^7 lẻ => z =0
ta có 26^x = 25^y + 1
với x = y+ 1 thì 26 = 25 +1 , đúng
với x > 1, y > 1 thì 26^x có 2 c/s t/c là 76
=> 26^x chia hết cho 4
25^y có 2 c/s t/c là 25 => 25^y chia 4 dư 1
=> 25 ^y + 1 chia 4 dư 2
=> 26^x khác 25^y + 1 , loại
Bài 4:
ta công tất cả các ( x-y)+(y-x)+(z+x) = 2012
đó là 2 lần x => x= 1006
rùi thay
ta có đ/s :
z =1007
y = -1005
Bài 5 :
do 20/39 là phân số tối giản
có UWCLN ( 20,39 ) =1
mà phân số cần tìm UWCLN của tử và mẫu là 36
=> phân số cần tìm là :
20.36/39.36
= 720.1404
Đ/S: 720/1404
Bài 6 :
vì UWClN ( a,b) = 12 => a =12 m, b =12n
( m,n ) =1
BCNN ( a,b ) =12 .m.n =180
=> m.n = 15
do vai trò a,b bình đẳng, giải sử a lớn hơn hoặc bằng b
=> m lớn hơn hoặc bằng n
mà ( m,n ) =1 => m =15, n= 1
hoặc m =5, n =3
vậy vs a =180=> b=12
vs a = 60 => b =36
b) A=\(\frac{5x-2}{x-3}=\frac{5x-15+13}{x-3}=\frac{5x-15}{x-3}+\frac{13}{x-3}=\frac{5\left(x-3\right)}{x-3}+\frac{13}{x-3}=5+\frac{13}{x-3}\)
Để A thuộc Z thì \(5+\frac{13}{x-3}\in Z\)
=>13 chia hết cho x-3
=>x-3 \(\in\)Ư(13)={-1;1;-13;13}
x-3=-1 x-3=1 x-3 =-13 x-3=13
x =-1+3 x =1+3 x =-13+3 x =13+3
x=2 x =4 x=-10 x=16
Vậy x=2;4;-10;16 thì A thuộc Z
c)B=\(\frac{6x-1}{3x+2}=\frac{6x+4-5}{3x+2}=\frac{6x+4}{3x+2}+\frac{-5}{3x+2}=\frac{2\left(3x+2\right)}{3x+2}+\frac{-5}{3x+2}=2+\frac{-5}{3x+2}\)
Để B thuộc Z thì \(2+\frac{-5}{3x+2}\in Z\)
=>-5 chia hết cho 3x+2
=>3x+2\(\in\)Ư(-5)={-1;1;-5;5}
3x+2=-1 3x+2=1 3x+2=-5 3x+2=5
3x =-3 3x =-1 3x =-7 3x =3
x =-1 x =-1/3 x =-7/3 x =1
Vậy x=-1;-1/3;-7/3;1 thì B thuộc Z
d) C=\(\frac{10x}{5x-2}=\frac{10x-4+4}{5x-2}=\frac{10-4}{5x-2}+\frac{4}{5x-2}=\frac{2\left(5x-2\right)}{5x-2}+\frac{4}{5x-2}=2+\frac{4}{5x-2}\)
Để C thuộc Z thì \(2+\frac{4}{5x-2}\in Z\)
=> 4 chia hết cho 5x-2
=>5x-2\(\in\)Ư(4)={-1;1;-2;2;-4;4}
5x-2=-1 5x-2=1 5x-2=2 5x-2=-2 5x-2=4 5x-2=-4
bạn tự giải tìm x như các bài trên nhé
d) bạn ghi đề mjk ko hjeu
e)E=\(\frac{4x+5}{x-3}=\frac{4x-12+17}{x-3}=\frac{4x-12}{x-3}+\frac{17}{x-3}=\frac{4\left(x-3\right)}{x-3}+\frac{17}{x-3}=4+\frac{17}{x-3}\)
Để E thuộc Z thì\(4+\frac{17}{x-3}\in Z\)
=>17 chia hết cho x-3
=>x-3 \(\in\)Ư(17)={1;-1;17;-17}
x-3=1 x-3=-1 x-3=17 x-3=-17
bạn tự giải tìm x nhé
điều cuối cùng cho mjk ****
a,Vì x,y thuộc Z nên \(\hept{\begin{cases}x+3\\y+1\end{cases}\in Z}\)
\(\Rightarrow\left(x+3\right);\left(y+1\right)\inƯ\left(3\right)\)
\(\Rightarrow\left(x+3\right);\left(y+1\right)\in\left\{\pm1;\pm3\right\}\)
\(\Rightarrow\orbr{\begin{cases}x+3=1\Rightarrow x=-2\\y+1=3\Rightarrow y=2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x+3=-1\Rightarrow x=-4\\y+1=-3\Rightarrow y=-4\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x+3=3\Rightarrow x=0\\y+1=1\Rightarrow y=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x+3=-3\Rightarrow x=-6\\y+1=-1\Rightarrow x=-2\end{cases}}\)
a. (x + 2) * (y - 5) = -7
<=> (y - 5) = -\(\dfrac{7}{x+2}\)
x ∈ Z => 7 chia hết cho (x + 2)
=> x = 5
<=> y -5 = -1
y = -1 + 5
y = 4
Vậy x = 5 và y = 4
b. (x-1) * (xy-3) = -5
<=> (xy-3) = -\(\dfrac{5}{x-1}\)
x ∈ Z => 5 chia hết cho x-1
=> x =6 ; -4; 2
TH1 : x = 6 => 6y-3
<=> 6y - 3 = -\(\dfrac{5}{6-1}\)
=> 6y - 3 = -1
6y = -1+3
6y = 2
y = 6:2
y = 3
TH2 : x = -4
<=> -4y - 3 = - \(\dfrac{5}{-4-1}\)
<=> -4y - 3 = 1
-4y = 1 + 3
-4y = 4
y = 4 : -4
y = -1
TH3 : x = 2
<=> 2y - 3 = -\(\dfrac{5}{2-1}\)
<=> 2y - 3 = -5
2y = -5 + 3
2y = -2
y = -2 : 2
y = -1
Vậy x =2 và y = -1 hoặc x = -4 và y = -1