K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2017

a) Ta có:

\(6x^2+5y^2=74\)

\(\Rightarrow6\left(x^2-4\right)=5\left(10-y^2\right)\) (1)

Từ (1) \(\Rightarrow6\left(x^2-4\right)⋮5\) và (5,6)=1

\(\Rightarrow x^2-4⋮5\Rightarrow x^2=5k+4\left(k\in N\right)\)

Thay \(x^2-4=5k\) vào (1) ta có:

\(\Rightarrow y^2=10-6k\)

\(\left\{{}\begin{matrix}x^2>0\\y^2>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}5k+4>0\\10k-4>0\end{matrix}\right.\)

\(\Rightarrow-\dfrac{4}{5}< k< \dfrac{5}{3}\Rightarrow\left[{}\begin{matrix}k=0\\k=1\end{matrix}\right.\)

(+) Nếu k = 0 \(\Rightarrow y^2=10\) (loại)

(+) Nếu k = 1 \(\Rightarrow\left\{{}\begin{matrix}x^2=9\\y^2=4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\pm3\\y=\pm4\end{matrix}\right.\)

Vậy (x,y) \(\in\left\{\left(3,2\right);\left(-3,-2\right)\right\}\)

20 tháng 8 2017

Câu b em chưa nghĩ ra đc chị ak

13 tháng 2 2017

Ghi rõ hơn chút nhé , mình không hiểu gì hết

13 tháng 2 2017

quá rõ òi kn rì

5 tháng 4 2017

a.(2600+6400)-3.x=1200

9000-3.x=1200

3.x=9000-1200

3.x=7800

x=7800/3

x=2600

Vậy x=2600

5 tháng 4 2017

b.[(6.x-72):2-84].28=5628

(6.x-72):2-84=5628:28

(6.x-72):2-84=201

(6.x-72):2=201+84

(6.x-72):2=285

6.x-72=285.2

6.x-72=570

6.x=570+72

6.x=642

x=642:6

x=107

vậy x=107

2 tháng 10 2017

a) 1010 và 48 . 505

Ta có: 48.505 = 24.2.505 = 24.1005 = 24.(102)5 = 24.1010

\(\Rightarrow\)1010 < 24.1010

hay 1010 < 48.505

2 tháng 10 2017

b) 321 và 231

Ta có: 321 = 3.320 = 3.(32)10 = 3.910

231 = 2.230 = 2.(23)10 = 2.810

\(\Rightarrow\)3.910 > 2.810

(vì 3 > 2; 910 > 810)

hay 321 > 231

23 tháng 6 2017

\(\left(20.2^4-12.2^3-48.2^2\right)^2:\left(-8\right)^3\)

\(=\left(20.16-12.9-48.4\right)^2:\left(-8\right)^3\)

\(=32^2:-512\)

\(=1024:-512=-2\)

\(\left(-2\right)\left(-3\right):\left(-1\right)-\left(-3\right)\left(-2\right):\left(-6\right)+\left(-2\right)\)

\(=-6-\left(-1\right)+\left(-2\right)\)

\(=-7\)

\(1.\left(-2\right)-\left(-3\right).\left(-4\right)-\left(-2\right).\left(-3\right)\)

\(=\left(-2\right)-12-6\)

\(=-20\)

23 tháng 6 2017

Cảm ơn bạn nhiều lắmhahahihi

16 tháng 4 2017

\(\left(x-y^2+z\right)^2\ge0\)

\(\left(y-2\right)^2\ge0\)

\(\left(z-3\right)^2\ge0\)

\(\left(x-y^2+z\right)^2+\left(y-2\right)^2+\left(z-3\right)^2=0\)

\(\Rightarrow\) \(\left(x-y^2+z\right)^2=0;\text{ }\left(y-2\right)^2=0;\text{ }\left(z-3\right)^2=0\)

+\(\text{ }\left(y-2\right)^2=0\)

\(\Rightarrow\text{ }y-2=0\)

\(y=0+2\)

\(y=2\)

+ \(\left(z-3\right)^2=0\)

\(\Rightarrow z-3=0\)

\(z=0+3\)

\(z=3\)

+ \(\left(x-y^2+z\right)^2=0\)

\(\Rightarrow x-y^2+z=0\)

\(x-2^2+3=0\)

\(x-4=0-3\)

\(x-4=-3\)

\(x=-3+4\)

\(x=1\)

Vậy: \(x=1;\text{ }y=2;\text{ }z=3\)

Bài 1: 

a: (x-1)(x-3)>=0

=>x-3>=0 hoặc x-1<=0

=>x>=3 hoặc x<=1

b: (x-5)(x-7)<0

=>x-5>0 và x-7<0

=>5<x<7

c: (x2-1)(x2-4)<0

=>1<x2<4

mà x là số nguyên

nên \(x\in\varnothing\)

10 tháng 11 2017

a) \(100:\left\{250:\left[450-\left(4.5^3-2^2.25\right)\right]\right\}\)

\(=100:\left\{250:\left[450-\left(4.125-4.25\right)\right]\right\}\)

\(=100:\left\{250:\left[450-\left(500-100\right)\right]\right\}\)

\(=100:\left[250:\left(450-400\right)\right]\)

\(=100:\left(250:50\right)\)

\(=100:5\)

\(=20\)

b) \(109.5^2-3^2.25\)

\(=109.25-9.25\)

\(=25\left(109-9\right)\)

\(=25.100\)

\(=2500\)

c) \(\left[5^2.6-20.\left(37-2^5\right)\right]:10-20\)

\(=\left[5^2.6-20.\left(37-32\right)\right]:10-20\)

\(=\left(5^2.6-20.5\right):10-20\)

\(=\left(25.6-20.5\right):10-20\)

\(=\left(150-100\right):10-20\)

\(=50:10-20\)

\(=5-20\)

\(=-15\)

3 tháng 3 2017

Đây bạn

Viết lại bài toán cần chứng minh
13+23+33+..n3=(1+2+3+...+n)213+23+33+..n3=(1+2+3+...+n)2
Với n=1;n=2n=1;n=2 thì đẳng thức hiển nhiên đúng, hay chính là câu a,b đó :P
Giả sử đẳng thức đúng với n=kn=k
Tức 13+23+33+...k3=(1+2+3+4..+k)213+23+33+...k3=(1+2+3+4..+k)2
Ta sẽ chứng minh nó đúng với n=k+1n=k+1
Viết lại đẳng thức cần chứng minh 13+23+33+...k3+(k+1)3=(1+2+3+4..+k+k+1)213+23+33+...k3+(k+1)3=(1+2+3+4..+k+k+1)2 (*)
Mặt khác ta có công thức tính tổng sau 1+2+3+4+...+n=n(n+1)21+2+3+4+...+n=n(n+1)2
⇒(1+2+3+4+...+n)2=(n2+n)24⇒(1+2+3+4+...+n)2=(n2+n)24
Vậy viết lại đẳng thức cần chứng minh
(k2+k)24+(k+1)3=(k2+3k+2)24(k2+k)24+(k+1)3=(k2+3k+2)24
⇔(k2+3k+2)2−(k2+k)2=4(k+1)3⇔(k2+3k+2)2−(k2+k)2=4(k+1)3
Bằng biện pháp "nhân tung tóe", đẳng thức cần chứng minh tuơng đuơng
⇔4k3+12k2+12k+4=4(k+1)3⇔4k3+12k2+12k+4=4(k+1)3
⇔4(k+1)3=4(k+1)3⇔4(k+1)3=4(k+1)3 ~ Đẳng thức này đúng.
Vậy theo nguyên lý quy nạp ta có đpcm.

3 tháng 3 2017

Giải hẳn hoi nha các bạn, đừng có viết luôn dạng tổng quát, nha hihiokthanghoavuibanh

29 tháng 10 2016

A=2+22+23+24+...+212

A=(2+22+23)+(24+25+26)+...+(210+211+212)

A=14.1+23.14+...+29.14

A=14(1+23+...+29)\(⋮\)7

Vậy A\(⋮\)7

30 tháng 10 2016

ucche đăng 1 câu hoài