Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện đã cho \(\Leftrightarrow7\left(x-2019\right)^2+y^2=23\) (*)
Do \(\left(x-2019\right)^2,y^2\ge0\) nên (*) suy ra \(y^2\le23\Leftrightarrow y^2\in\left\{0,1,4,9,16\right\}\)
\(\Leftrightarrow y\in\left\{0,1,2,3,4\right\}\)
Hơn nữa, lại có \(y^2=23-7\left(x-2019\right)^2\). Ta thấy \(VP\) chia 7 dư 2.
\(\Rightarrow y^2\) chia 7 dư 2 \(\Rightarrow y\in\left\{3,4\right\}\)
Xét \(y=3\) \(\Rightarrow7\left(x-2019\right)^2=14\) \(\Leftrightarrow\left(x-2019\right)^2=2\), vô lí.
Xét \(y=4\Rightarrow7\left(x-2019\right)^2=7\) \(\Leftrightarrow\left(x-2019\right)^2=1\) \(\Leftrightarrow\left[{}\begin{matrix}x=2020\\x=2018\end{matrix}\right.\)
Vậy \(\left(x,y\right)\in\left\{\left(4;2020\right),\left(4;2018\right)\right\}\) thỏa mãn ycbt.
a,Tìm x,y thuộc Z biết : 25-y^2=8(x-2009)^2
b,Tìm x,y thuộc N biết : (2008x+3y+1).(2008x+2008x+y)=225
mh cx có bài thầy giao y hệt. Khi nào thầy chữa mh gửi cho
Ta có 8(x-2009)^2 = 25- y^2
8(x-2009)^2 + y^2 =25 (*)
Vì y^2 \(\ge\) 0 nên (x-2009)^2\(\le\frac{25}{8}\) , suy ra (x-2009)^2 = 0 hoặc (x-2009)^2 =1
Với (x -2009)^2 =1 thay vào (*) ta có y^2 = 17 (loại)
Với (x- 2009)^2= 0 thay vào (*) ta có y^2 =25 suy ra y = 5 (do )
Từ đó tìm được (x=2009; y=5)
đúng cái nhé