Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(8\left|x-2017\right|=25-y^{2\text{}}\)
\(\Leftrightarrow8\left|x-2017\right|+y^2=25=25+0=24+1=21+4=16+9\)
Mà \(8\left|x-2017\right|\) chẵn nên ta có các trường hợp sau:
TH1: \(\left\{{}\begin{matrix}8\left|x-2017\right|=0\\y^2=25\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2017\\y=\pm5\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}8\left|x-2017\right|=24\\y^2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=2020\\x=2014\end{matrix}\right.\\y=\pm5\end{matrix}\right.\)
TH3: \(\left\{{}\begin{matrix}8\left|x-2017\right|=16\\y^2=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=2019\\x=2015\end{matrix}\right.\\y=\pm3\end{matrix}\right.\)
Do \(\left|y-1\right|+2\ge2\Rightarrow\left(x-1\right)\left(4-x\right)\ge2\)
\(\Rightarrow-x^2+5x-6\ge0\\ \Rightarrow\left(3-x\right)\left(x-2\right)\ge0\\ \Rightarrow2\le x\le3\)
Mà \(x\in Z\Rightarrow x\in\left\{2;3\right\}\)
Với \(x=2\Rightarrow\left|y-1\right|+2=2\Rightarrow\left|y-1\right|=0\Rightarrow y=1\)
Với \(x=3\Rightarrow\left|y-1\right|+2=3\Rightarrow\left|y-1\right|=1\Rightarrow\left[{}\begin{matrix}y=2\\y=0\end{matrix}\right.\)
Vậy PT có nghiệm \(\left(x;y\right)\) là \(\left(2;1\right);\left(3;2\right);\left(3;0\right)\)
=> (y + 2).x + (4 - y2) = 3
=> (y + 2).x - (y + 2)(y - 2) = 3
=> (y + 2)(x - y + 2) = 3
=> y + 2 \(\in\)Ư(3) = {-3;-1;1;3}
+) y + 2 = -3 => y = -5 và x - y + 2 = -1 => x = -3 + y = -8
+) y + 2 = -1 => y = -3 và x - y + 2 = -3 => x = -5 + y = -8
+) y + 2 = 1 => y = -1 ; x = 0
+) y + 2 = 3 => y = 1; x = 0
Vậy...