K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2022

Do \(\left(x+3\right)^{2020}\ge0\) và \(\left(y-2\right)^{2020}\ge0\) với mọi \(x,y\)

Để \(\left(x+3\right)^{2020}+\left(y-2\right)^{2020}=0\) thì \(x+3=0\) và \(y-2=0\)

Vậy \(x=-3,y=2\)

(x+3)^2020>=0

(y-2)^2020>=0

=>(x+3)^2020+(y-2)^2020>=0 với mọi x,y

Dấu = xảy ra khi x=-3 và y=2

28 tháng 10 2023

4:

(x+1)(y-2)=5

=>\(\left(x+1;y-2\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)

=>\(\left(x,y\right)\in\left\{\left(0;7\right);\left(4;3\right);\left(-2;-3\right);\left(-6;1\right)\right\}\)

8 tháng 1 2023

`xy-x+y-3=0`

`=>x(y-1)+y-1-2=0`

`=>(y-1)(x+1)=2=2.1=(-1).(-2)`

`@x+1=2` và `y-1=1`

   `x=1`     và `y=2`

`@x+1=1` và `y-1=2`

   `x=0`      và `y=3`

`@x+1=-1` và `y-1=-2`

   `x=-2`     và `y=-1`

`@x+1=-2` và `y-1=-1`

   `x=-3`    và `y=0`

8 tháng 1 2023

\(xy-x+y-3=0\\ =>x\left(y-1\right)+\left(y-1\right)-2=0\\ =>\left(x+1\right)\left(y-1\right)=2\)

\(+,TH1:\)

\(\left\{{}\begin{matrix}x+1=2\\y-1=1\end{matrix}\right.=>\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

\(+,TH2:\\ \left\{{}\begin{matrix}x+1=1\\y-1=2\end{matrix}\right.=>\left\{{}\begin{matrix}x=0\\y=3\end{matrix}\right.\)

\(+,TH3:\\ \left\{{}\begin{matrix}x+1=-1\\y-1=-2\end{matrix}\right.=>\left\{{}\begin{matrix}x=-2\\y=-1\end{matrix}\right.\\ +,TH4:\\ \left\{{}\begin{matrix}x+1=-2\\y-1=-1\end{matrix}\right.=>\left\{{}\begin{matrix}x=-3\\y=0\end{matrix}\right.\)

4 tháng 3 2020

1.

vì \(x-y=2\)

\(\Rightarrow y=x-2\)

\(\Rightarrow x>y\)

vì \(\left|y\right|\le5\)

\(\Rightarrow-5\le y\le5\)

Ta có: \(\left|x\right|\le3\)

⇒ xmin=−3 và xmax=3

⇒ ymin=−5 và ymax=1

\(\Rightarrow-5\le y\le1\text{( đúng)}\)

\(\Rightarrow\text{Với }-3\le x\le3\)thì  \(y=x-2\)