Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: \(\Leftrightarrow x-1\in\left\{1;-1;3;-3\right\}\)
hay \(x\in\left\{2;0;4;-2\right\}\)
a) (x+3)(y+5)=1
vì x nguyên y nguyên nên x+3 và y+5 nguyên
theo bài ra thì x+3 và y+5 phải là ước của 1
Ư(1) = {-1; 1)
+) nếu x+3 = 1 thì y +5 = 1
=> x = -2 và y = -4
+) nếu x+3 = -1 thì y +5 = -1
=> x = -4 và y = -6
b) (2x-5)(y-6)=17
tương tự câu a
theo bài ra thì 2x-5 và y-6 phải là ước của 17
Ư(17) = {-1; 1; -17, 17)
+) nếu 2x - 5 = -1 thì y +5 = -17
=> 2x = 4 y = -22
=> x = 2
+) nếu 2x - 5 = 1 thì y +5 = 17
=> 2x = -6 y = 12
=> x = -3
+) nếu 2x - 5 = -17 thì y +5 = -1
......
+) nếu 2x - 5 = 17 thì y +5 = 1
...........
bạn giải tiếp ra và kết luận nhé
a) ta có: x+3=1 suy ra x=-2
y+5=1 suy ra y=-4
b) ta có: 2x-5=17 suy ra 2x=22
x=11
y-6=17 suy ra y= 23
(x-2)(y+1)=-4
⇔xy+x-2y-2=-4
⇔-31+x-2y-2=-4
⇔x-2y=4+2+31
⇔x-2y=39
⇔x=39+2y
⇔y=x-39 / 2
1)ta có x.y=23=1.23=(-1)(-23)⇒các cặp (x,y)là(1,23);(23,1);(-1,-23);(-23;-1)
vậy......
2) ta có:(x-1 ).(y+2)= -4=-1.4=1.(-4)=-2.2=2.(-2)
⇒th1:x-1=-1 y+2=4
x=-1+1=0 y=4-2=2
th2:x-1=1 y+2=-4
x=1+1=2 y=-4-2=-6
th3:x-1=-2 y+2=2
x=-2+1=-1 y=2-2=0
th4:x-1=2 y+2=-2
x=2+1=3 y=-2-2=-4
vậy các cặp (x,y)là(0,2);(2,-6);(-1,0);(3,-4)
\(\frac{x}{3}-\frac{4}{y}=\frac{1}{5}\)
\(\Rightarrow\frac{4}{y}=\frac{x}{3}-\frac{1}{5}\)
\(\Rightarrow\frac{4}{y}=\frac{5x-3}{15}\)
\(\Rightarrow4.15=y\left(5x-3\right)\)
\(\Rightarrow y\left(5x-3\right)=60\)
Ta có : 60 = 1.60 = 60.1 = 2.30= 30.2 = 5.12 = 12.5 = 6.10 = 10.6 = 3. 20 = 20.3
Vì 5x-3 là số lẻ => 5x - 3 \(\in\){1; -1; 5; -5; 3; -3}
Lập bảng :
y | 60 | -60 | 12 | -12 | 20 | -20 |
5x - 3 | 1 | -1 | 5 | -5 | 3 | -3 |
x | 4/5 | 2/5 | 8/5 | -2/5 | 6/5 | 0 |
Vì x và y là số nguyên nên ta có x = 0 , y = -20
|6-2x|+|x-13|=0
\(\orbr{\begin{cases}6-2x=0\\x-13=0\end{cases}}\)
\(\orbr{\begin{cases}2x=6-0=6\\x=0+13=13\end{cases}}\)
\(\orbr{\begin{cases}x=6:2=3\\x=13\end{cases}}\)
Vậy x thuộc {3,13}
Giải
Ta có: \(\left(2x+1\right)\left(y^2-5\right)=12\)
\(\Leftrightarrow\hept{\begin{cases}2x+1\\y^2-5\end{cases}}\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm4;\pm6;\pm3;\pm12\right\}\)
Lập bảng:
\(2x+1\) | \(-1\) | \(-2\) | \(-3\) | \(-4\) | \(-6\) | \(-12\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(12\) |
\(y^2-5\) | \(-12\) | \(-6\) | \(-4\) | \(-3\) | \(-2\) | \(-1\) | \(12\) | \(6\) | \(4\) | \(3\) | \(2\) | \(1\) |
\(x\) | \(-1\) | Loại | \(-2\) | Loại | \(1\) | |||||||
\(y\) | Loại | Loại | Loại | Loại | Loại | Loại | Loại | Loại | \(3\) | Loại | Loại | Loại |
Vậy x =1 và y = 3
\(xy+x+y=4\\ x\left(y+1\right)+y+1=4+1=5\\ \left(x+1\right)\left(y+1\right)=5\)
\(x+1\) | \(5\) | \(1\) | \(-1\) | \(-5\) |
\(y+1\) | \(1\) | \(5\) | \(-5\) | \(-1\) |
\(x\) | \(4\) | \(0\) | \(-2\) | \(-6\) |
\(y\) | \(0\) | \(4\) | \(-6\) | \(-2\) |
a: \(\Leftrightarrow\left(x+1;y-4\right)\in\left\{\left(1;19\right);\left(19;1\right);\left(-1;-19\right);\left(-19;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(0;23\right);\left(18;5\right);\left(-2;-15\right);\left(-20;3\right)\right\}\)
b: \(\Leftrightarrow\left(2x+1;y-5\right)\in\left\{\left(1;23\right);\left(23;1\right);\left(-1;-23\right);\left(-23;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(0;28\right);\left(11;6\right);\left(-1;-18\right);\left(-12;4\right)\right\}\)