K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2023

a, (3 - \(x\))(4y + 1) = 20

   Ư(20) = { -20; -10; -5; -4; -2; -1; 1; 2; 4; 5; 10; 20}

Lập bảng ta có:

\(3-x\) -20 -10 -5 -4 -2 -1 1 2 4 5 10 20
\(x\) 23  13 8 7 5 4 2 1 -1 -2 -7 -17
4\(y\) + 1 -1 -2 -4 -5 -10 -20 20 10 5 4 2 1
\(y\) -1/2 -3/4 -5/4 -6/4 -11/4 -21/4 19/4 9/4 1 3/4 1/4 0

Vậy các cặp \(x;y\) nguyên thỏa mãn đề bài là:

(\(x;y\)) =(-1; 1); (-17; 0)

 

 

25 tháng 6 2023

b, \(x\left(y+2\right)\)+ 2\(y\) = 6

    \(x\) = \(\dfrac{6-2y}{y+2}\)

\(x\in\) Z ⇔ 6 - \(2y⋮\) \(y\) + 2 ⇒-(2y + 4) +10 ⋮ \(y\) + 2 ⇒ -2(\(y\)+2) +10 ⋮ \(y\)+2

⇒ 10 ⋮ \(y\) + 2

Ư(10) = { -10; -5; -2; -1; 1; 2; 5; 10}

Lập bảng ta có:

\(y+2\) -10 -5 -2 -1 1 2 5 10
\(y\) -12 -7 -4 -3 -1 0 3 8
\(x=\) \(\dfrac{6-2y}{y+2}\) -3 -4 -7 -12 8 3 0 -1

 Theo bảng trên ta có các cặp \(x;y\)

 nguyên thỏa mãn đề bài lần lượt là:

(\(x;y\)    ) =(-3; -12); (-4; -7); (-12; -3); (8; -1); (3; 0); (0;3 (-1; 8)                           

 

5 tháng 8 2016

a) 6x - 2y = 3y - 4x

=> 6x - 2y + (2y + 4x) = 3y - 4x + (2y + 4x) => 10x = 5y => 2x = y => \(\frac{x}{1}=\frac{y}{2}=\frac{x+y}{1+2}=\frac{99}{3}\) = 33 => x = 33 ; y = 66

b) 7x - 2y = 7y - 6x 

=> 7x - 2y + (2y + 6x) = 7y - 6x + (2y + 6x) => 13x = 9y => \(\frac{x}{9}=\frac{y}{13}=\frac{2x}{18}=\frac{3y}{39}=\frac{2x+3y}{18+39}=\frac{20}{57}\)

=> \(x=\frac{60}{19};y=\frac{260}{57}\)

5 tháng 8 2016

a) 6x - 2y = 3y - 4x 

6x + 4x = 3y + 2y

10x = 5y

=> x/5 = y/10 

Áp dụng t/c của dãy tỉ số bằng nhau:

\(\frac{x}{5}=\frac{y}{10}=\frac{x+y}{5+10}=\frac{99}{15}=\frac{33}{5}\)

(đến đây tự làm)

b) 7x - 2y = 7y - 6x 

7x + 6x = 7y + 2y 

13x = 9y 

=> x/9 = y/13  

=> 2x/18 = 3y/39 

Áp dụng t/c của dãy tỉ số bằng nhau :

(tự làm tiếp nha)

AH
Akai Haruma
Giáo viên
30 tháng 4 2023

a.

$7x-2y=5x-3y$

$\Leftrightarrow 2x=-y$. Thay vào điều kiện số 2 ta có:

$-y+3y=20$

$2y=20$

$\Rightarrow y=10$. 

$x=\frac{-y}{2}=\frac{-10}{2}=-5$

 

AH
Akai Haruma
Giáo viên
30 tháng 4 2023

b.

$2x=3y\Rightarrow \frac{x}{3}=\frac{y}{2}$

$3y=4z-2y\Rightarrow 5y=4z\Rightarrow \frac{y}{4}=\frac{z}{5}$

$\Rightarrow \frac{x}{6}=\frac{y}{4}=\frac{z}{5}$

Áp dụng tính chất dãy tỉ số bằng nhau:

$\frac{x}{6}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{6+4+5}=\frac{45}{15}=3$

$\Rightarrow x=6.3=18; y=4.3=12; z=5.3=15$ 

 

1 tháng 8 2020

Ta có : 4x = 3y => \(\frac{x}{\frac{1}{4}}=\frac{y}{\frac{1}{3}}\)=> \(\frac{2x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{2x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{2x+y}{\frac{1}{2}+\frac{1}{3}}=\frac{10}{\frac{5}{6}}=12\)

Từ đó suy ra x = 3,y = 4

1 tháng 8 2020

\(4x=3y\Rightarrow\frac{x}{\frac{1}{4}}=\frac{y}{\frac{1}{3}}\)và 2x + y = 10

\(\Rightarrow\frac{2x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}\)và 2x + y = 10

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{2x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{2x+y}{\frac{1}{2}+\frac{1}{3}}=\frac{10}{\frac{5}{6}}=12\)

\(\frac{2x}{\frac{1}{2}}=12\Rightarrow2x=6\Rightarrow x=3\)

\(\frac{y}{\frac{1}{3}}=12\Rightarrow y=4\)

3 tháng 3 2019

Ta có:\(\left(2x-3y\right)^{10}+\left|4x-3z\right|+\left|x^2+y^2+z^2-116\right|=0\)

Mà \(\hept{\begin{cases}\left(2x-3y\right)^{10}\ge0\\\left|4x-3z\right|\ge0\\x^2+y^2+z^2-116\ge0\end{cases}}\)

\(\Rightarrow\left(2x-3y\right)^{10}+\left|4x-3z\right|+\left|x^2+y^2+z^2-116\right|\ge0\)

Dấu '=" xảy ra khi và chỉ khi:

\(\hept{\begin{cases}2x-3y=0\\4x-3z=0\\x^2+y^2+z^2-116=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x=3y\\4x=3z\\x^2+y^2+z^2=116\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{x}{3}=\frac{y}{2}\\\frac{x}{3}=\frac{z}{4}\\x^2+y^2+z^2=116\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{x}{3}=\frac{y}{2}=\frac{z}{4}\\x^2+y^2+z^2=116\left(1\right)\end{cases}}\)

Đặt \(\frac{x}{3}=\frac{y}{2}=\frac{z}{4}=k\)

\(\Rightarrow x=3k;y=2k;z=4k\)

Thay vào (1) ta được:

\(\left(3k\right)^2+\left(2k\right)^2+\left(4k\right)^2=116\)

\(\Rightarrow9k^2+4k^2+16k^2=116\)

\(\Rightarrow k^2\left(9+4+16\right)=116\)

\(\Rightarrow k^2=4\)

\(\Rightarrow k=2\left(h\right)k=-2\)

Thay vào tìm được \(x=-6;y=-4;z=-8\left(h\right)x=6;y=4;z=8\)