\(2xy-x-y=2\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2017

b) Vì \(VT=25-y^2\le25\) nên \(VP=8\left(x-2012\right)^2\le25\Rightarrow\left(x-2012\right)^2\le\frac{25}{8}\)

Mà \(x\in Z\Rightarrow\left(x-2012\right)^2\in Z\) Hay \(\orbr{\begin{cases}\left(x-2012\right)^2=0\\\left(x-2012\right)^2=1\end{cases}}\)

Xét \(\left(x-2012\right)^2=0\Rightarrow x=2012\)

\(\Rightarrow25-y^2=0\Rightarrow\orbr{\begin{cases}y=-5\\y=5\end{cases}}\)(TM)

Xét \(\left(x-2012\right)^2=1\) thay vào ta được \(25-y^2=8\Rightarrow y^2=17\)(loại)

Vậy \(\left(x;y\right)=\left\{\left(2012;-5\right);\left(2012;5\right)\right\}\)

4 tháng 3 2018

                       XONG RỒI ĐẤY BẠN

a) \(x^2-2x+2xy=3+4y\)

\(x^2-2x+2xy-4y=3\)

\(x\left(x-2\right)+2y\left(x-2\right)=3\)

\(\left(x-2\right)\left(x+2y\right)=3\)

\(\Rightarrow x-2;x+2y\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Rightarrow\)Ta có bảng giá trị:

\(x-2\)\(1\)\(-1\)\(3\)\(-3\)
\(x+2y\)\(3\)\(-3\)\(1\)\(-1\)
\(x\)\(3\)\(1\)\(5\)\(-1\)
\(y\)\(0\)\(-2\)\(-2\)\(0\)

               Vậy, \(\left(x;y\right)\in\left\{\left(3;0\right);\left(1;-2\right);\left(5;-2\right)\left(-1;0\right)\right\}\)

b) \(\left|2x-3y\right|+\left|5y-7z\right|+\left|x^2-y^2-2z^2-45\right|=0\)

             Ta có: \(\left|2x-3y\right|\ge0\)

                        \(\left|5y-7z\right|\ge0\)

                        \(\left|x^2-y^2-2z^2-45\right|\ge0\)

                  \(\Rightarrow\left|2x-3y\right|+\left|5y-7z\right|+\left|x^2-y^2-2z^2-45\right|\ge0\)

            Mà đề cho \(\left|2x-3y\right|+\left|5y-7z\right|+\left|x^2-y^2-2z^2-45\right|=0\)

               \(\Rightarrow\hept{\begin{cases}\left|2x-3y\right|=0\\\left|5y-7z\right|=0\\\left|x^2-y^2-2z^2-45\right|=0\end{cases}\Rightarrow\hept{\begin{cases}2x-3y=0\\5y-7z=0\\x^2-y^2-2z^2-45=0\end{cases}}}\)

               \(\Rightarrow\hept{\begin{cases}2x=3y\\5y=7z\\x^2-y^2-2z^2=45\end{cases}\Rightarrow\hept{\begin{cases}10x=15y\\15y=21z\\x^2-y^2-2z^2=45\end{cases}}}\)

               \(\Rightarrow10x=15y=21z\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\Rightarrow\frac{x^2}{21^2}=\frac{y^2}{14^2}=\frac{z^2}{10^2}\)và \(x^2-y^2-2z^2=45\)

                             Áp dụng tính chất dãy tỉ số bằng nhau, ta được:

                           \(\frac{x^2}{21^2}=\frac{y^2}{14^2}=\frac{z^2}{10^2}=\frac{2z^2}{2\cdot10^2}=\frac{x^2-y^2-2z^2}{21^2-14^2-2\cdot10^2}\)

                                                                                        \(=\frac{45}{441-196-200}=1\)(vì \(x^2-y^2-2z^2=45\))

                 \(\Rightarrow\hept{\begin{cases}x^2=21^2\\y^2=14^2\\z^2=10^2\end{cases}}\Rightarrow\hept{\begin{cases}x=21\\y=14\\z=10\end{cases}}\)

                           Vậy, \(\left(x;y;z\right)=\left(21;14;10\right)\)

                                   

4 tháng 3 2018

cảm ơn bạn nha Huỳnh Phước Mạnh

10 tháng 7 2019

a)Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(\left|x-1\right|+\left|3+x\right|=\left|1-x\right|+\left|3+x\right|\ge\left|1-x+3+x\right|=4\)

\(\Rightarrow VT\ge VP."="\Leftrightarrow-3\le x\le1\)

b) \(\hept{\begin{cases}\left|2x+3\right|+\left|2x-1\right|=\left|2x+3\right|+\left|1-2x\right|\ge4\\\frac{8}{2\left(y-5\right)^2+2}\le4\end{cases}}\Leftrightarrow VT\ge VP."="\Leftrightarrow\hept{\begin{cases}-\frac{3}{2}\le x\le\frac{1}{2}\\y=5\end{cases}}\)

c Tương tự b

2) \(\frac{1}{x}+\frac{1}{y}=5\Leftrightarrow x+y-5xy=0\Leftrightarrow5x+5y-25xy=0\Leftrightarrow5x\left(1-5y\right)-\left(1-5y\right)=-1\)

\(\Leftrightarrow\left(5x-1\right)\left(1-5y\right)=-1\)

Xét ước

11 tháng 3 2019

1,b, 2xy - x = y + 5

<=> 4xy - 2x = 2y + 10

<=> 2x(2y - 1) - (2y - 1) = 11

<=> (2x - 1)(2y - 1) = 11

Lập bảng ra làm nốt

11 tháng 3 2019

\(1,c,\frac{1}{x}-3=-\frac{1}{y-2}\)

\(\Leftrightarrow y-2-3x\left(y-2\right)=-x\)

\(\Leftrightarrow y-2-3xy+6x+x=0\)

\(\Leftrightarrow-3xy+7x+y-2=0\)

\(\Leftrightarrow-x\left(3y-7\right)+y-2=0\)

\(\Leftrightarrow-3x\left(3y-7\right)+3y-6=0\)

\(\Leftrightarrow-3x\left(3y-7\right)+\left(3y-7\right)=-1\)

\(\Leftrightarrow\left(1-3x\right)\left(3y-7\right)=-1\)

Lập bảng làm nốt

20 tháng 8 2015

a) \(\frac{x^2+x+3}{x+1}=\frac{x\left(x+1\right)+3}{x+1}=x+\frac{3}{x+1}\)

x là số nguyên nên để \(\frac{x^2+x+3}{x+1}\) nguyên thì \(\frac{3}{x+1}\) nguyên => 3 chia hết cho x+ 1

=> x +1 \(\in\)Ư(3) = {-3;-1;1;3}

+) x+ 1 = -3 => x = -4

+) x+ 1= -1 => x = -2

+) x+ 1 = 1 => x = 0 

+) x + 1 = 3 => x = 2

Vậy...

b) x + 2xy + y = 0

=> x(1 + 2y) = -y . Vì y nguyên nên 1 + 2y khác 0  ( Do nếu 1 + 2y = 0 thì y = -1/2 không phải là số nguyên)

=> x = \(\frac{-y}{2y+1}\)

Để x nguyên thì y phải chia hết cho 2y + 1

=> 2y chia hết cho 2y + 1

Mà 2y + 1 luôn chia hết cho 2y + 1 nên hiệu (2y + 1) - 2y chia hết cho 2y + 1

=> 1 chia hết cho 2y + 1 => 2y + 1 \(\in\)Ư(1) = {-1;1}

+) Nếu 2y + 1 = 1 => y = 0 

+) Nếu 2y + 1 = -1 => y = -1 

Thử lại: y = 0 => x = 0 ( Chọn)

y = -1 => x = -1 ( Chọn)

Vậy (x;y) = (0;0) hoặc (-1;-1)

11 tháng 3 2018

a, \(\frac{a^2+a+3}{a+1}=\frac{a\left(a+1\right)+3}{a+1}=1+\frac{3}{a+1}\)

Để \(\frac{a^2+a+3}{a+1}\inℤ\) thì \(a+1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)

Ta có bảng:

a+11-13-3
a0-22-4

Vậy....

b, x - 2xy + y = 0

<=> 2x - 4xy + 2y = 0

<=> 2x(1 - 2y) + 2y - 1 = -1

<=> 2x(1 - 2y) - (1 - 2y) = -1

<=> (2x - 1)(1 - 2y) = -1

ta có bảng:

2x-11-1
1-2y-11
x10
y10

Vậy...

5 tháng 6 2020

ta có\(2xy-x-y=2\)

\(\Rightarrow x(2y-1)-y=2\)

\(\Rightarrow2x(2y-1)-2y+1=3\)

\(\Leftrightarrow2x\left(2y-1\right)-\left(2y-1\right)=3\)\(\Rightarrow\left(2y-1\right)\left(2x-1\right)=3 \)nên\(2x-1\inƯ\left(3\right)=\hept{\pm1;\pm3}\)

đến đây thôi nhé

phần còn lại mấy cậu tự làm đi

Ta có : 2xy - 5 = 2x2 + y 

\(\implies\) 2xy - 2x- y = 5

\(\implies\) ( 2xy - y ) - 2x2 = 5

\(\implies\) y ( 2x - 1 ) - 2x= 5

\(\implies\) 2y ( 2x - 1 ) - 4x2 = 10

​​\(\implies\) 2y ( 2x -1 ) - ( 2x )2 = 10

\(\implies\) 2y ( 2x - 1 ) - ( 2x )2 + 1 = 11

\(\implies\) 2y ( 2x - 1 ) - [ ( 2x )2 - 1 ] = 11 

\(\implies\) 2y ( 2x - 1 ) - ( 2x - 1 ) ( 2x + 1 ) =11

\(\implies\) ( 2x - 1 ) [ 2y - ( 2x + 1 ) ] = 11

\(\implies\) 2x - 1  ; 2y - ( 2x + 1 ) \(\in\) Ư ( 11 ) = { 1 ; -1 ; 11 ; -11 }

Ta có bảng sau :

2x - 11-111-11
x106-5
2y - ( 2x + 1 )11-111-1
y7-57-5

Vậy ( x ; y ) \(\in\) { (1 ; 7 ), ( 0 ; -5 ) , ( 6 ; 7 ) , (-5 ; -5 ) }