K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2018

b) (x-3).(2y+1)=7 
(x-3).(2y+1)= 1.7 = (-1).(-7) 
Cứ cho x - 3 = 1 => x= 4 
2y + 1 = 7 => y = 3 
Tiếp x - 3 = 7 => x = 10 
2y + 1 = 1 => y = 0 
x-3 = -1 ...=> x = 2

3 tháng 2 2018

a) x + xy + y + 2 = 0

<=> x.(1 + y) + y + 2 = 0

<=> x.(1 + y) + y + 1 - 1 +2

<=> x.(1 + y) + (1 + y) + 1 = 0

<=> (1 + y).( x + 1) + 1 = 0

=> 1 + y \(\in\)Ư(1) =  { 1 ; -1 }

Ta lập bảng:

1+y1-1
x+1-11
x0-2
y-20

Kết luận: x = 0 ; y = -2

               x = -2; y = 0
 

11 tháng 1 2022

a, \(x,y\in Z\Rightarrow\left\{{}\begin{matrix}x-3,2y-6\in Z\\x-3,2y-6\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\end{matrix}\right.\)

Ta có bảng:

x-3-1-515
2y-6-5-151
x2-248
y\(\dfrac{1}{2}\left(loại\right)\)\(\dfrac{5}{2}\left(loại\right)\)\(\dfrac{11}{2}\left(loại\right)\)\(\dfrac{7}{2}\left(loại\right)\)

Vậy không có x,y thỏa mãn đề bài 

b, tương tự câu a

 \(c,xy-5x+2y=7\\ \Rightarrow x\left(y-5\right)+2y-10=-3\\ \Rightarrow x\left(y-5\right)+2\left(y-5\right)=-3\\ \Rightarrow\left(x+2\right)\left(y-5\right)=-3\)

Rồi làm tương tự câu a

\(d,xy-3x-4y=5\\ \Rightarrow x\left(y-3\right)-4y+12=17\\ \Rightarrow x\left(y-3\right)-4\left(y-3\right)=17\\ \Rightarrow\left(x-4\right)\left(y-3\right)=17\)

Rồi làm tương tự câu a

 

Bài 2: 

a: =>x=0 hoặc x+3=0

=>x=0 hoặc x=-3

b: =>x-2=0 hoặc 5-x=0

=>x=2 hoặc x=5

c: =>x-1=0

hay x=1

7 tháng 11 2023

a) \(\left(2x+3\right)\left(y-1\right)=54\) 

\(\Rightarrow2x+3,y-1\inƯ\left(54\right)\)

Ta có bảng sau: 

2x + 3541-1-542-227-27-996-618-18-33
y - 1154-54-127-272-2-669-93-3-1818
x51/2-1-2-57/2-1/2-5/212-15-633/2-9/215/2-21/2-30
y255-53028-263-1-5710-84-2-1719

Vậy: ... 

a: =>xy=-18

=>x,y khác dấu

mà x<y<0 

nên không có giá trị nào của x và y thỏa mãn yêu cầu đề bài

b: =>(x+1)(y-2)=3

\(\Leftrightarrow\left(x+1,y-2\right)\in\left\{\left(1;3\right);\left(3;1\right);\left(-1;-3\right);\left(-3;-1\right)\right\}\)

hay \(\left(x,y\right)\in\left\{\left(0;5\right);\left(2;3\right);\left(-2;-1\right);\left(-4;1\right)\right\}\)

c: \(\Leftrightarrow8x-4=3x-9\)

=>5x=-5

hay x=-1

10 tháng 8 2023

a) \(x\left(x-6\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)

b) \(\left(-7-x\right)\left(-x+5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-7\\x=-5\end{matrix}\right.\)

c) \(\left(x+3\right)\left(x-7\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x-7=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=7\end{matrix}\right.\)

d) \(\left(x-3\right)\left(x^2+12\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\text{(vô lý)}\end{matrix}\right.\)

\(\Rightarrow x=3\)

e) \(\left(x+1\right)\left(2-x\right)\ge0\)

\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x+1\ge0\\2-x\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x+1\le0\\2-x\le0\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\ge-1\\x\le2\end{matrix}\right.\\\left[{}\begin{matrix}x\le-1\\x\ge2\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}-1\le x\le2\\x\in\varnothing\end{matrix}\right.\)

\(\Rightarrow-1\le x\le2\)

f) \(\left(x-3\right)\left(x-5\right)\le0\)

\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x-3\le0\\x-5\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x-3\ge0\\x-5\le0\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\le3\\x\ge5\end{matrix}\right.\\\left[{}\begin{matrix}x\ge3\\x\le5\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow3\le x\le5\)

a) =>\(\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)

b => \(\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-7\\x=5\end{matrix}\right.\)

d) => \(\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\end{matrix}\right.\)(vô lí) => x=3

17 tháng 1 2022

lỗi rồi

17 tháng 1 2022

lỗi

7 tháng 2 2022

a) \(\left(x+1\right)\left(y+4\right)=7\).

-Vì \(x,y\in Z\) nên ta có thể viết:

\(\left(x+1\right)\left(y+4\right)=1.7\) hay \(\left(x+1\right)\left(y+4\right)=7.1\) hay \(\left(x+1\right)\left(y+4\right)=\left(-1\right).\left(-7\right)\) hay \(\left(x+1\right)\left(y+4\right)=\left(-7\right).\left(-1\right)\)

+Xét trường hợp \(\left(x+1\right)\left(y+4\right)=1.7\):

\(\Rightarrow x+1=1\) và \(y+4=7\) 

\(\Rightarrow x=0\left(tmđk\right)\) và \(y=3\left(tmđk\right)\).

+Xét trường hợp \(\left(x+1\right)\left(y+4\right)=7.1\):

\(\Rightarrow x+1=7\) và \(y+4=1\) 

\(\Rightarrow x=6\left(tmđk\right)\) và \(y=-3\left(tmđk\right)\).

+Xét trường hợp \(\left(x+1\right)\left(y+4\right)=\left(-1\right).\left(-7\right)\):

\(\Rightarrow x+1=-1\) và \(y+4=-7\)

\(\Rightarrow x=-2\left(tmđk\right)\) và \(y=-11\left(tmđk\right)\).

+Xét trường hợp \(\left(x+1\right)\left(y+4\right)=\left(-7\right).\left(-1\right)\):

\(\Rightarrow x+1=-7\) và \(y+4=-1\)

\(\Rightarrow x=-8\left(tmđk\right)\) và \(y=-5\left(tmđk\right)\).

b) \(xy+2x-3y=-1\)

\(\Rightarrow xy+2x-3y+1=0\)

\(\Rightarrow y\left(x-3\right)=-2x-1\)

\(\Rightarrow y=-\dfrac{2x+1}{x-3}=\dfrac{2\left(x-3\right)-5}{x-3}=2-\dfrac{5}{x-3}\)

-Vì \(y\in Z\) \(\Rightarrow5⋮\left(x-3\right)\).

\(\Rightarrow\left(x-3\right)\inƯ\left(5\right)\)

\(\Rightarrow x-3\in\left\{1;-1;5;-5\right\}\)

\(\Rightarrow x\in\left\{4;2;8;-2\right\}\) (đều thỏa mãn điều kiện).

+Với \(x=4\) thì \(y=\dfrac{5}{4-3}=5\) (tmđk).

+Với \(x=2\) thì \(y=\dfrac{5}{2-3}=-5\) (tmđk).

+Với \(x=8\) thì \(y=\dfrac{5}{8-3}=1\) (tmđk)

+Với \(x=-2\) thì \(y=\dfrac{5}{-2-3}=-1\) (tmđk).