Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: \(\Leftrightarrow\left|x+\dfrac{4}{15}\right|=-2.15+3.75=\dfrac{8}{5}\)
=>x+4/15=8/5 hoặc x+4/15=-8/5
=>x=4/3 hoặc x=-28/15
b: \(\Leftrightarrow\left[{}\begin{matrix}\dfrac{5}{3}x=-\dfrac{1}{6}\\\dfrac{5}{3}x=\dfrac{1}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{6}:\dfrac{5}{3}=\dfrac{-3}{30}=\dfrac{-1}{10}\\x=\dfrac{1}{10}\end{matrix}\right.\)
c: \(\Leftrightarrow\left|x-1\right|-1=1\)
=>|x-1|=2
=>x-1=2 hoặc x-1=-2
=>x=3 hoặc x=-1
Bài 2:
b: \(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y+\dfrac{9}{25}=0\end{matrix}\right.\Leftrightarrow x=y=-\dfrac{9}{25}\)
Bài 3:
a: \(A=\left|x+\dfrac{15}{19}\right|-1>=-1\)
Dấu '=' xảy ra khi x=-15/19
b: \(\left|x-\dfrac{4}{7}\right|+\dfrac{1}{2}>=\dfrac{1}{2}\)
Dấu '=' xảy ra khi x=4/7
Bài 1:
a)
\(\dfrac{x-1}{9}=\dfrac{8}{3}\\ \Leftrightarrow\dfrac{x-1}{9}=\dfrac{24}{9}\\ \Leftrightarrow x-1=24\\ x=24+1\\ x=25\)
b)
\(\left(\dfrac{3x}{7}+1\right):\left(-4\right)=\dfrac{-1}{8}\\ \dfrac{3x}{7}+1=\dfrac{-1}{8}\cdot\left(-4\right)\\ \dfrac{3x}{7}+1=\dfrac{1}{2}\\ \dfrac{3x}{7}=\dfrac{1}{2}-1\\ \dfrac{3x}{7}=\dfrac{-1}{2}\\ 3x=\dfrac{-1}{2}\cdot7\\ 3x=\dfrac{-7}{2}\\ x=\dfrac{-7}{2}:3\\ x=\dfrac{-7}{6}\)
c)
\(x+\dfrac{7}{12}=\dfrac{17}{18}-\dfrac{1}{9}\\ x+\dfrac{7}{12}=\dfrac{5}{6}\\ x=\dfrac{5}{6}-\dfrac{7}{12}\\ x=\dfrac{1}{4}\)
d)
\(0,5x-\dfrac{2}{3}x=\dfrac{7}{12}\\ \dfrac{1}{2}x-\dfrac{2}{3}x=\dfrac{7}{12}\\ x\cdot\left(\dfrac{1}{2}-\dfrac{2}{3}\right)=\dfrac{7}{12}\\ \dfrac{-1}{6}x=\dfrac{7}{12}\\ x=\dfrac{7}{12}:\dfrac{-1}{6}\\ x=\dfrac{-7}{2}\)
e)
\(\dfrac{29}{30}-\left(\dfrac{13}{23}+x\right)=\dfrac{7}{46}\\ \dfrac{29}{30}-\dfrac{13}{23}-x=\dfrac{7}{46}\\ \dfrac{277}{690}-x=\dfrac{7}{46}\\ x=\dfrac{277}{690}-\dfrac{7}{46}\\ x=\dfrac{86}{345}\)
f)
\(\left(x+\dfrac{1}{4}-\dfrac{1}{3}\right):\left(2+\dfrac{1}{6}-\dfrac{1}{4}\right)=\dfrac{7}{46}\\ \left(x-\dfrac{1}{12}\right):\dfrac{23}{12}=\dfrac{7}{46}\\ x-\dfrac{1}{12}=\dfrac{7}{46}\cdot\dfrac{23}{12}\\ x-\dfrac{1}{12}=\dfrac{7}{24}\\ x=\dfrac{7}{24}+\dfrac{1}{12}\\ x=\dfrac{3}{8}\)
g)
\(\dfrac{13}{15}-\left(\dfrac{13}{21}+x\right)\cdot\dfrac{7}{12}=\dfrac{7}{10}\\ \left(\dfrac{13}{21}+x\right)\cdot\dfrac{7}{12}=\dfrac{13}{15}-\dfrac{7}{10}\\ \left(\dfrac{13}{21}+x\right)\cdot\dfrac{7}{12}=\dfrac{1}{6}\\ \dfrac{13}{21}+x=\dfrac{1}{6}:\dfrac{7}{12}\\ \dfrac{13}{21}+x=\dfrac{2}{7}\\ x=\dfrac{2}{7}-\dfrac{13}{21}\\ x=\dfrac{-1}{3}\)
h)
\(2\cdot\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|-\dfrac{3}{2}=\dfrac{1}{4}\\ 2\cdot\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{1}{4}+\dfrac{3}{2}\\ 2\cdot\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{7}{4}\\ \left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{7}{4}:2\\ \left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{7}{8}\Rightarrow\left[{}\begin{matrix}\dfrac{1}{2}x-\dfrac{1}{3}=\dfrac{7}{8}\\\dfrac{1}{2}x-\dfrac{1}{3}=\dfrac{-7}{8}\end{matrix}\right.\\ \dfrac{1}{2}x-\dfrac{1}{3}=\dfrac{7}{8}\\ \dfrac{1}{2}x=\dfrac{7}{8}+\dfrac{1}{3}\\ \dfrac{1}{2}x=\dfrac{29}{24}\\ x=\dfrac{29}{24}:\dfrac{1}{2}\\ x=\dfrac{29}{12}\\ \dfrac{1}{2}x-\dfrac{1}{3}=\dfrac{-7}{8}\\ \dfrac{1}{2}x=\dfrac{-7}{8}+\dfrac{1}{3}\\ \dfrac{1}{2}x=\dfrac{-13}{24}\\ x=\dfrac{-13}{24}:\dfrac{1}{2}\\ x=\dfrac{-13}{12}\)
i)
\(3\cdot\left(3x-\dfrac{1}{2}\right)^3+\dfrac{1}{9}=0\\ 3\cdot\left(3x-\dfrac{1}{2}\right)^3=0-\dfrac{1}{9}\\ 3\cdot\left(3x-\dfrac{1}{2}\right)^3=\dfrac{-1}{9}\\ \left(3x-\dfrac{1}{2}\right)^3=\dfrac{-1}{9}:3\\ \left(3x-\dfrac{1}{2}\right)^3=\dfrac{-1}{27}\\ \left(3x-\dfrac{1}{2}\right)^3=\left(\dfrac{-1}{3}\right)^3\\ \Leftrightarrow3x-\dfrac{1}{2}=\dfrac{-1}{3}\\ 3x=\dfrac{-1}{3}+\dfrac{1}{2}\\ 3x=\dfrac{1}{6}\\ x=\dfrac{1}{6}:3\\ x=\dfrac{1}{18}\)
a. \(\Rightarrow\left\{\begin{matrix}\dfrac{-10}{15}=\dfrac{x}{-9}\\\dfrac{-10}{15}=\dfrac{-8}{y}\\\dfrac{-10}{15}=\dfrac{z}{-21}\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}x=6\\y=12\\z=14\end{matrix}\right.\)
b. \(\Rightarrow\left\{\begin{matrix}\dfrac{-7}{6}=\dfrac{x}{18}\\\dfrac{-7}{6}=\dfrac{-98}{y}\\\dfrac{-7}{6}=\dfrac{-14}{z}\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}x=-21\\y=84\\z=-12\end{matrix}\right.\)
a) Ta có: \(\dfrac{-10}{15}=\dfrac{x}{-9}\)
\(\Rightarrow15x=-10.\left(-9\right)\)
\(\Rightarrow15x=90\)
\(\Rightarrow x=6\)
Khi đó: \(\dfrac{6}{-9}=\dfrac{-8}{y}=\dfrac{z}{-21}\)
\(\Rightarrow y=\dfrac{-8\left(-9\right)}{6}=12\)
và \(z=\dfrac{-8\left(-21\right)}{12}\) \(=14\)
Vậy \(\left[{}\begin{matrix}x=6\\y=12\\z=14\end{matrix}\right.\)
b) Lại có: \(\dfrac{-7}{6}=\dfrac{x}{18}\)
\(\Rightarrow6x=-7.18\)
\(\Rightarrow6x=-126\)
\(\Rightarrow x=-21\)
Khi đó \(\dfrac{-21}{18}=\dfrac{-98}{y}=\dfrac{-14}{z}\)
\(\Rightarrow y=\dfrac{-98.18}{-21}=84\)
và \(z=\dfrac{-14.84}{-98}=12\)
Vậy \(\left[{}\begin{matrix}x=-21\\y=84\\z=12\end{matrix}\right.\)
bài 3:
a, đặt \(\dfrac{x}{12}=\dfrac{y}{9}=\dfrac{z}{5}=k\)
=>x=12k,y=9k,z=5k
ta có: ayz=20=> 12k.9k.5k=20
=> (12.9.5)k^3=20
=>540.k^3=20
=>k^3=20/540=1/27
=>k=1/3
=>x=12.1/3=4
y=9.1/3=3
z=5.1/3=5/3
vậy x=4,y=3,z=5/3
b,ta có: \(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x^2}{25}=\dfrac{y^2}{49}=\dfrac{z^2}{9}\)
A/D tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x^2}{25}=\dfrac{y^2}{49}=\dfrac{z^2}{9}=\dfrac{x^2+y^2-z^2}{25+49-9}=\dfrac{585}{65}=9\)
=>x=5.9=45
y=7.9=63
z=3*9=27
vậy x=45,y=63,z=27
\(-\dfrac{1}{3}< \dfrac{A}{36}< \dfrac{B}{18}< -\dfrac{1}{4}\)
<=>\(-\dfrac{12}{36}< \dfrac{A}{36}< \dfrac{2B}{36}< -\dfrac{9}{36}\)
<=> -12 < x + 1 < 2(2 - y) < -9
<=> -12 < x + 1 < 4 - 2y < -9
=> x + 1 = -11 => x = -12
4 - 2y = -10 => y = 7
Vậy (x; y) = (-12; 7)
−13<A36<B18<−14−13<A36<B18<−14
<=>−1236<A36<2B36<−936−1236<A36<2B36<−936
<=> -12 < x + 1 < 2(2 - y) < -9
<=> -12 < x + 1 < 4 - 2y < -9
=> x + 1 = -11 => x = -12
4 - 2y = -10 => y = 7
Vậy (x; y) = (-12; 7)
Bài 2: a) \(\dfrac{x-3}{x+5}=\dfrac{5}{7}\)
\(\Leftrightarrow\left(x-3\right).7=\left(x+5\right).5\)
\(\Leftrightarrow7x-21=5x+25\)
\(\Leftrightarrow7x-5x=21+25\)
\(\Leftrightarrow2x=46\)
\(\Rightarrow x=46:2=23\)
b) \(\dfrac{7}{x-1}=\dfrac{x+1}{9}\)
\(\Leftrightarrow\left(x+1\right)\left(x-1\right)=63\)
\(\Leftrightarrow x^2-1=63\)
\(\Leftrightarrow x^2=64\)
\(\Rightarrow x^2=\left(\pm8\right)^2\)
\(\Rightarrow x=8\) hoặc \(x=-8\)
2)a) \(\dfrac{x-3}{x+5}=\dfrac{5}{7}\)
\(\Leftrightarrow7\left(x-3\right)=5\left(x+5\right)\)
\(7x-21=5x+25\)
\(7x-5x+25=21\)
\(2x+25=21\)
\(2x=-4\Rightarrow x=-2\)
b) \(\dfrac{7}{x-1}=\dfrac{x+1}{9}\)
\(7.9=\left(x+1\right)\left(x-1\right)\)
\(63=x\left(x-1\right)+1\left(x-1\right)\)
\(63=x^2-x+x-1\)
\(x^2=63+1=64\)
\(x=\left\{\pm8\right\}\)
c) \(\dfrac{x+4}{20}=\dfrac{2}{x+4}\)
\(\Leftrightarrow\left(x+4\right)\left(x+4\right)=2.20=40\)
\(x\left(x+4\right)+4\left(x+4\right)=40\)
\(x^2+4x+4x+16=40\)
\(x^2+8x=40-16=24\)
\(x\left(x+8\right)=24\)
\(x\in\left\{\varnothing\right\}\)
d) \(\dfrac{x-1}{x+2}=\dfrac{x-2}{x+3}\)
\(\Leftrightarrow\left(x+2\right)\left(x-2\right)=\left(x-1\right)\left(x+3\right)\)
\(x\left(x-2\right)+2\left(x-2\right)=x\left(x+3\right)-1\left(x+3\right)\)
\(x^2-2x+2x-4=x^2+3x-x-3\)
\(\)\(x^2-4=x^2+2x-3\)
\(\Leftrightarrow x^2-x^2-2x+3=4\)
\(-2x+3=4\)
\(-2x=1\)
\(x=-\dfrac{1}{2}\)
a/ \(\dfrac{-5}{x}\) = \(\dfrac{-18}{72}\)
\(\Rightarrow\dfrac{5}{x}=\dfrac{18}{72}=\dfrac{1}{4}\)
\(\Rightarrow x=5:\dfrac{1}{4}=20\)
\(\dfrac{y}{16}=\dfrac{-18}{72}\) \(=\dfrac{-1}{4}\)
\(\Leftrightarrow\) 4y = - 16
\(\Leftrightarrow\) y = -4
Vậy x = 20 ; y = -4
b/ \(\dfrac{1}{2}=\dfrac{x-1}{8}=\dfrac{10}{y-5}\)
\(\Rightarrow\dfrac{x-1}{8}=\dfrac{1}{2}\)
\(\Rightarrow\dfrac{x-1}{8}=\dfrac{4}{8}\)
\(\Rightarrow x-1=4\)
\(\Rightarrow\) \(x=4+1\)
\(x=5\)
\(\dfrac{10}{y-5}=\dfrac{1}{2}\)
\(\Rightarrow\dfrac{10}{y-5}=\dfrac{10}{20}\)
\(\Rightarrow\) \(y-5=20\)
\(\Rightarrow y=20+5\)
\(y=25\)
Vậy x = 5 ; y = 25
a)
\(-\dfrac{5}{x}=-\dfrac{18}{72}\\ \Leftrightarrow\dfrac{5}{x}=\dfrac{18}{72}=\dfrac{1}{4}\\ \Leftrightarrow x=20\)
\(\dfrac{y}{16}=\dfrac{-18}{72}=-\dfrac{1}{4}\\ \Leftrightarrow4y=-16\\ \Leftrightarrow y=-4\)
b)
\(\dfrac{x-1}{8}=\dfrac{1}{2}\Rightarrow\dfrac{x-1}{8}=\dfrac{4}{8}\Rightarrow x-1=4\Rightarrow x=5\)
\(\dfrac{10}{y-5}=\dfrac{1}{2}\Leftrightarrow y-5=20\Leftrightarrow y=25\)
@Ace Legona; @Akai Haruma; @ngonhuminh; @Hoang Hung Quan; ...