\(x>0,y>0\) và  \(\frac{x}{y}=\frac{2}{5};x^2+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2017

\(\frac{x}{y}=\frac{2}{5}\Rightarrow\frac{x}{2}=\frac{y}{5}\Rightarrow\frac{x^2}{4}=\frac{y^2}{25}=\frac{x^2+y^2}{4+25}=\frac{29}{29}=1\)

\(\Rightarrow\hept{\begin{cases}\frac{x^2}{4}=1\\\frac{y^2}{25}=1\end{cases}\Rightarrow\hept{\begin{cases}x^2=4\\y^2=25\end{cases}\Rightarrow}\hept{\begin{cases}x=\pm2\\y=\pm5\end{cases}}}\)

6 tháng 10 2017

may ngu the

11 tháng 10 2018

a) Ta có: \(\hept{\begin{cases}\left|y-1\right|\ge0\forall y\\\left|5-x\right|\ge0\forall x\end{cases}\Rightarrow\left|y-1\right|+\left|5-x\right|\ge0\forall}x;y\)

Mà \(\left|y-1\right|+\left|5-x\right|=0\)

\(\Rightarrow\hept{\begin{cases}\left|y-1\right|=0\\\left|5-x\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}y-1=0\\5-x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=1\\x=5\end{cases}}}\)

Vậy \(\hept{\begin{cases}y=1\\x=5\end{cases}}\)

b)  Ta có: \(\left|y-6\right|\ge0\forall y\)

\(\Rightarrow\left|y-6\right|>0\Leftrightarrow y\ne6\)

\(\Rightarrow\)Để \(\frac{\left|y-6\right|}{x+2}>0\)thì \(\hept{\begin{cases}y\ne6\\x+2>0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}y\ne6\\x>-2\end{cases}}\)

Vậy \(\hept{\begin{cases}y\ne6\\x>-2\end{cases}}\)

c) Ta có: \(x^2\ge0\forall x\)

\(\Rightarrow x^2>0\Leftrightarrow x\ne0\)

Để \(\frac{x^2-1}{x^2}>0\Leftrightarrow\hept{\begin{cases}x^2-1>0\\x\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x>1\\x\ne0\end{cases}\Leftrightarrow}x>1}\)

Vậy \(x>1\)

Tham khảo nhé~

7 tháng 8 2016

\(\frac{x}{3}=\frac{y}{5}\)

=> \(\frac{x^4}{3^4}=\frac{y^4}{5^4}=\frac{x^2.y^2}{3^2.5^2}=\frac{225}{225}=1\)

=> x4 = 34 => x = 3 hoặc x = -3

y4 = 54 => x = 5 hoặc x = -5

KL: (x; y) = (3; 5) ; (-3; -5)

7 tháng 8 2016

Đặt:

\(\frac{x}{3}=\frac{y}{5}=k\)

Ta có:

\(\frac{x}{3}=k\Rightarrow x=k.3\)

\(\frac{y}{5}=k\Rightarrow y=k.5\)

Thế vào \(x^2y^2=225\), ta có:

\(\left(k.3\right)^2.\left(k.5\right)^2=225\)

\(\Rightarrow\left(k^2.15\right)^2=225\)

\(\Rightarrow\left(k^2.15\right)=15\)

\(\Rightarrow k^2=1\)

\(\Rightarrow k=1\)hoặc \(-1\)

x ; y tự tìm bạn.

=> x = -3

y = -5

21 tháng 7 2019

Đặt \(\frac{x}{5}=\frac{y}{3}=k\)

\(\Rightarrow x=5k;y=3k\)

Ta có:

\(25k^2+9k^2=4\)

\(\Rightarrow29k^2=4\)

\(\Rightarrow k=\pm\sqrt{\frac{4}{29}}\) 

P/S:Có lẽ sai đề hoặc mik lm sai chỗ nào đó:V

\(\frac{x}{5}=\frac{y}{3}\Rightarrow\frac{x^2}{5^2}=\frac{y^2}{3^2}\)

Áp dụng tính chất của dãy tỉ số bằng nhau , ta được

\(\frac{x^2}{5^2}=\frac{y^2}{3^2}=\frac{x^2+y^2}{5^2+3^2}=\frac{4}{34}=\frac{2}{17}\)

\(\Rightarrow\frac{x^2}{5^2}=\frac{2}{17}\Rightarrow x^2=\frac{2.5^2}{17}=\frac{50}{17}\Rightarrow x=\sqrt{\frac{50}{17}}\)

\(\Rightarrow\frac{y^2}{3^2}=\frac{2}{17}\Rightarrow y^2=\frac{2.3^2}{17}=\frac{18}{17}\Rightarrow y=\sqrt{\frac{18}{17}}\)

_Tử yên_

26 tháng 9 2019

 Ta có 

<br class="Apple-interchange-newline"><div></div>2x3y =13  

=><br class="Apple-interchange-newline"><div></div>-2x1 =3y3 

Áp dụng tính chất dãy Tỉ số bằng nhau ,ta có

 -2x/1= 3y/3 = (-2x+3y)/( 1+3) = 7/4

=> x= -7/8, y=7/4

Ta có x/5 = y/3

=> x^2/25 =y^2/ 9

Áp dụng tính chất dãy tỉ số bằng nhau ta có 

x^2 /25 = y^2/9 = (x^2 -y^2)/(25- 9)= 1/4

=> x = 5/2, y = 3/2 (x,y>0)