Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{y}=\frac{3}{8}\)
\(\Leftrightarrow\frac{x}{3}=\frac{y}{8}\)
\(x-y=\frac{25}{8}\)
Áp dụng tích chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{8}=\frac{x-y}{3-8}=\frac{3,125}{-5}\)
Tự biên tự diễn
\(x:y=3:8\Rightarrow\frac{x}{3}=\frac{y}{8}=\frac{x-y}{3-8}=\frac{\frac{25}{8}}{-5}=-\frac{5}{8}\)
\(\Rightarrow\hept{\begin{cases}x=-\frac{5}{8}.3=-\frac{15}{8}\\y=-\frac{5}{8}.8=-5\end{cases}}\)
Vậy \(x=-\frac{15}{8};y=-5\).
a, \(\frac{x}{5}=\frac{y}{6};\frac{y}{8}=\frac{z}{7};x+y-7=60\)
\(\Rightarrow\frac{x}{5.8}=\frac{y}{6.8};\frac{y}{8.6}=\frac{z}{7.6};x+y=67\)
\(\Rightarrow\frac{x}{40}=\frac{y}{48};\frac{y}{48}=\frac{z}{42};x+y=67\)
\(\Rightarrow\frac{x}{40}=\frac{y}{48}=\frac{z}{42};x+y=67\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{40}=\frac{y}{48}=\frac{x+y}{40+48}=\frac{67}{88}\)
Tính nốt nha
C1 dãy tỉ số bằng nhau
\(\frac{x}{y}=\frac{3}{1}\Rightarrow\frac{x}{3}=\frac{y}{1}=\frac{x+y}{3+1}=-\frac{6}{\frac{5}{4}}=-\frac{3}{10}\)
\(\frac{x}{3}=-\frac{3}{10}\Rightarrow x=-\frac{3}{10}.3=-\frac{9}{10}\)
\(\frac{y}{1}=-\frac{3}{10}\Rightarrow y=-\frac{3}{10}.1=-\frac{3}{10}\)
\(x=-\frac{9}{10}\) và \(y=-\frac{3}{10}\)
a)x+y=25
x=25-y
thay x=25-y vào x-y=13 ta được:
25-y-y=13
25-2y=13
-2y=-12
y=6
=>x=25-6
x=19
vậy x=19;y=6
b) x:y=-2:5
=>\(\frac{x}{-2}=\frac{y}{5}\)
đặt \(\frac{x}{-2}=\frac{y}{5}=k\Rightarrow x=-2k;y=5k\)
thay x=-2k;y=5k vào xy=-10 ta được:
-2k.5k=-10
-10k2=-10
k2=1
=>k=1 hoặc k=-1
với k=1 thì
x=-2.1=-2
y=5.1=5
với k=-1 thì:
x=-2.(-1)=2
y=5.(-1)=-5
ta có \(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{x}{8}=\frac{y}{12};\frac{y}{12}=\frac{z}{15}\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
Suy ra \(\frac{x}{8}=2\Rightarrow x=2.8=16\)
\(\frac{y}{12}=2\Rightarrow y=2.12=24\)
\(\frac{z}{15}=2\Rightarrow z=2.15=30\)
Vậy x=16;y=24;z=30
Lời giải:
Đặt $\frac{x}{3}=\frac{y}{2}=t$
$\Rightarrow x=3t; y=2t$. Thay vô điều kiện $4x-y=20$ ta có:
$4.3t-2t=20$
$\Leftrightarrow 10t=20\Leftrightarrow t=2$
$\Rightarrow x=3t=6; y=2t=4$
\(x:y=7:6\Leftrightarrow\frac{x}{7}=\frac{y}{6}=\frac{x+y}{7+6}=\frac{39}{13}=3\)
\(\Rightarrow\frac{x}{7}=3\Leftrightarrow x=21;\frac{y}{6}=3\Leftrightarrow y=18\)
...
#)Giải :
\(\frac{3x}{5}=\frac{2y}{3}\Leftrightarrow\frac{3x}{5}.\frac{1}{6}=\frac{2y}{3}.\frac{1}{6}\)
\(\Rightarrow\frac{3x}{30}=\frac{2y}{18}\Rightarrow\frac{x}{10}=\frac{y}{9}\Rightarrow\frac{x^2}{100}=\frac{y^2}{81}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{x^2}{100}=\frac{y^2}{81}=\frac{x^2-y^2}{100-81}=\frac{38}{19}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{x^2}{100}=2\\\frac{y^2}{81}=2\end{cases}\Rightarrow\hept{\begin{cases}x^2=200\\y^2=162\end{cases}\Rightarrow}\hept{\begin{cases}x=\pm\sqrt{200}\\y=\pm\sqrt{162}\end{cases}}}\)
Vậy ...
Vì x : y = 3 : 8 nên \(\frac{x}{y}=\frac{3}{8}\)\(\Rightarrow\)\(\frac{x}{3}=\frac{y}{8}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{8}=\frac{x-y}{3-8}=\frac{\frac{25}{6}}{-5}=-\frac{125}{6}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{3}=-\frac{125}{6}\\\frac{y}{8}=-\frac{125}{6}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=-\frac{125}{2}\\y=-\frac{500}{3}\end{cases}}\)
Theo bài ra ta có :
\(x\div y=3\div8\)
\(\Leftrightarrow\frac{x}{y}=\frac{3}{8}\Leftrightarrow\frac{x}{3}=\frac{y}{8}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{8}=\frac{x-y}{3-8}=\frac{25}{-5}=\left(-5\right)\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{3}=\left(-5\right)\Rightarrow x=\left(-15\right)\\\frac{y}{8}=\left(-5\right)\Rightarrow y=\left(-40\right)\end{cases}}\)
Vậy ....