K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2020

x2 + ( y - 1/10 )4 = 0

\(\hept{\begin{cases}x^2\ge0\forall x\\\left(y-\frac{1}{10}\right)^4\ge0\forall y\end{cases}}\Rightarrow x^2+\left(y-\frac{1}{10}\right)^4\ge0\forall x,y\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x^2=0\\\left(y-\frac{1}{10}\right)^4=0\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=\frac{1}{10}\end{cases}}\)

Vậy x = 0 ; y = 1/10

29 tháng 8 2020

Bài làm:

Ta có: \(\hept{\begin{cases}x^2\ge0\\\left(y-\frac{1}{10}\right)^4\ge\end{cases}}\left(\forall x,y\right)\)

=> \(x^2+\left(y-\frac{1}{10}\right)^4\ge0\left(\forall x,y\right)\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}x^2=0\\\left(y-\frac{1}{10}\right)^4=0\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=\frac{1}{10}\end{cases}}\)

17 tháng 8 2019

Bài 1: (1/2x - 5)20 + (y2 - 1/4)10 < 0 (1)

Ta có: (1/2x - 5)20 \(\ge\)\(\forall\)x

         (y2 - 1/4)10 \(\ge\)\(\forall\)y

=> (1/2x - 5)20 + (y2 - 1/4)10 \(\ge\)\(\forall\)x;y

Theo (1) => ko có giá trị x;y t/m

Bài 2. (x - 7)x + 1 - (x - 7)x + 11 = 0

=> (x - 7)x + 1.[1 - (x - 7)10] = 0

=> \(\orbr{\begin{cases}\left(x-7\right)^{x+1}=0\\1-\left(x-7\right)^{10}=0\end{cases}}\)

=> \(\orbr{\begin{cases}x-7=0\\\left(x-7\right)^{10}=1\end{cases}}\)

=> x = 7

hoặc : \(\orbr{\begin{cases}x-7=1\\x-7=-1\end{cases}}\)

=> x = 7

hoặc : \(\orbr{\begin{cases}x=8\\x=6\end{cases}}\)

Bài 3a) Ta có: (2x + 1/3)4 \(\ge\)\(\forall\)x

=> (2x +1/3)4 - 1 \(\ge\)-1 \(\forall\)x

=>  A \(\ge\)-1 \(\forall\)x

Dấu "=" xảy ra <=> 2x + 1/3 = 0 <=> 2x = -1/3 <=> x = -1/6

Vậy Min A = -1 tại x = -1/6

b) Ta có: -(4/9x - 2/5)6 \(\le\)\(\forall\)x

=> -(4/9x - 2/15)6 + 3 \(\le\)\(\forall\)x

=> B \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> 4/9x - 2/15 = 0 <=> 4/9x = 2/15 <=> x = 3/10

vậy Max B = 3 tại x = 3/10

17 tháng 8 2019

Đúng ko vậy bạn

29 tháng 8 2020

Ta có \(\hept{\begin{cases}\left(\frac{1}{2}x-5\right)^{20}\ge0\forall x\\\left(y^2-\frac{1}{4}\right)^{10}\ge0\forall y\end{cases}}\Rightarrow\left(\frac{1}{2}x+5\right)^{20}+\left(y^2-\frac{1}{2}\right)^{10}\ge0\forall x;y\)

mà \(\left(\frac{1}{2}x+5\right)^{20}+\left(y^2-\frac{1}{4}\right)^{10}\le0\)

=> Đẳng thức xảy ra <=> \(\hept{\begin{cases}\frac{1}{2}x+5=0\\y^2-\frac{1}{4}=0\end{cases}}\Rightarrow\hept{\begin{cases}\frac{1}{2}x=-5\\y^2=\frac{1}{4}\end{cases}}\Rightarrow\hept{\begin{cases}x=-10\\y=\pm\frac{1}{2}\end{cases}}\)

Vậy các cặp (x;y) thỏa mãn là \(\left(-10;\frac{1}{2}\right);\left(-10;-\frac{1}{2}\right)\)

29 tháng 8 2020

( 1/2x - 5 )20 + ( y2 - 1/4 )10 ≤ 0 (1)

Ta có : \(\hept{\begin{cases}\left(\frac{1}{2}x-5\right)^{20}\ge0\forall x\\\left(y^2-\frac{1}{4}\right)^{10}\ge0\forall y\end{cases}\Rightarrow}\left(\frac{1}{2}x-5\right)^{20}+\left(y^2-\frac{1}{4}\right)^{10}\ge0\forall x,y\)(2)

Từ (1) và (2) => Chỉ xảy ra trường hợp ( 1/2x - 5 )20 + ( y2 - 1/4 )10 = 0

=> \(\hept{\begin{cases}\frac{1}{2}x-5=0\\y^2-\frac{1}{4}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=10\\y=\pm\frac{1}{2}\end{cases}}\)

Vậy ( x ; y ) = { ( 10 ; 1/2 ) , ( 10 ; -1/2 ) }

9 tháng 3 2020

Hình như chưa có y,z...

9 tháng 3 2020
  1. Do (x2 - 1) (x2 - 4).(x2 - 7).(x- 10) < 0 nên x2 \(\notin\){ 1; 4; 7; 10} (Vì nếu thuộc tích trên sẽ bằng 0)

       2.Vì x2 là số chính phương nên x2 \(\notin\){ 2; 3; 5; 6; 7; 8}

       3.Ta có x2 không bé hơn hay bằng 0, vì nếu không x2 - 1, x2 - 4, x2 - 7 và x- 10 sẽ là 4 số nguyên âm => Tích (x2 - 1) (x2 - 4).(x2 - 7).(x- 10) là số nguyên dương (trái với đề) => x2 > 0. Mặt khác x2 < 11 vì (x2 - 1) (x2 - 4).(x2 - 7).(x- 10) < 0 nên phair cos thừa  số be hơn 0.

=> 0 < x2 < 11

Từ 3 điều trên ==> x2 = 9 => x = 3

29 tháng 8 2017

k cho mình nha

29 tháng 8 2017

a, (x-3)^2 +( y+2)^2 =0 

=> (x-3)^2=0  => x-3=0  =>x= 3

     (y+2)^2=0 => y+2=0 =>y= -2

nhớ k cho mik nha!!!!!