\(5x^2+2y^2+13+10x+2y=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2018

      \(5x^2+2y^2+13+10x+2y\)

\(=5x^2+10x+5+2y^2+2y+\frac{1}{2}+7\frac{1}{2}\)

\(=5\left(x^2+2x+1\right)+2\left(y^2+y+\frac{1}{4}\right)+7\frac{1}{2}\)

\(=5\left(x+1\right)^2+2\left(y+\frac{1}{4}\right)^2+7\frac{1}{2}>0\forall x;y\)

dẫn đến mâu thuẫn so với đề bài.

Vậy \(x,y\in\varnothing\)

Chúc bạn học tốt.

23 tháng 6 2017

Bài này giải rồi mà

NV
10 tháng 10 2020

a/

\(\Leftrightarrow\left(x^2+4y^2+1-4xy+2x-4y\right)+\left(y^2-6y+9\right)-19=0\)

\(\Leftrightarrow\left(x-2y+1\right)^2+\left(y-3\right)^2=19\)

Do 19 không thể phân tích thành tổng của 2 số chính phương nên pt vô nghiệm

b/

\(\left(4x^2+4y^2+8xy\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)

\(\Leftrightarrow\left(2x+2y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

Do x; y nguyên dương nên \(\left(2x+2y\right)^2>0\Rightarrow VT>0\)

Pt vô nghiệm

NV
10 tháng 10 2020

c/

\(\Leftrightarrow\left(x^2+4y^2+25-4xy+10x-20y+25\right)+\left(y^2-2y+1\right)+\left|x+y+z\right|=0\)

\(\Leftrightarrow\left(x-2y+5\right)^2+\left(y-1\right)^2+\left|x+y+z\right|=0\)

Do x;y;z nguyên dương nên \(\left|x+y+z\right|>0\Rightarrow VT>0\)

Vậy pt vô nghiệm

d/

\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(x^2+10x+25\right)+\left(y^2+6y+9\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)^2+\left(x+5\right)^2+\left(y+3\right)^2=0\)

Do x;y;z nguyên dương nên vế phái luôn dương

Pt vô nghiệm

23 tháng 6 2017

a)

\(5x^2+9y^2-12xy-6x+9=0\)

\(\Leftrightarrow\left(4x^2-12xy+9y^2\right)+\left(x^2-6x+9\right)=0\)

\(\Leftrightarrow\left(2x-3y\right)^2+\left(x-3\right)^2=0\)

Vì \(\hept{\begin{cases}\left(2x-3y\right)^2\ge0\\\left(x-3\right)^2\ge0\end{cases}}\)nên

\(\Rightarrow\hept{\begin{cases}\left(2x-3y\right)^2=0\\\left(x-3\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}2x-3y=0\\x-3=0\end{cases}\Rightarrow}\hept{\begin{cases}x=3\\y=2\end{cases}}}\)

Vậy x=3 và y=2

23 tháng 6 2017

b)

\(2x^2+2y^2+2xy-10x-8y+41=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(x^2-10x+25\right)+\left(y^2-8y+16\right)=0\)

\(\Leftrightarrow\left(x+y\right)^2+\left(x-5\right)^2+\left(y-4\right)^2=0\)\(\)

Vì \(\hept{\begin{cases}\left(x+y\right)^2\ge0\\\left(x-5\right)^2\ge0\\\left(y-4\right)^2\ge0\end{cases}}\)nên

\(\Rightarrow\hept{\begin{cases}\left(x+y\right)^2=0\\\left(x-5\right)^2=0\\\left(y-4\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x+y=0\\x-5=0\\y-4=0\end{cases}\Rightarrow}\hept{\begin{cases}x+y=0\\x=5\\y=4\end{cases}}}\)( VÔ nghiệm vì \(x+y\ne0\))

Vậy không có giá trị x, y nào thỏa mãn đề bài

13 tháng 7 2017

a) \(-2x\left(10x-3\right)+5x\left(4x+1\right)=25\)

\(-20x^2+6x+20x^2+5x=25\)

\(\Rightarrow6x+5x=25\)

\(\Rightarrow11x=25\)

\(\Rightarrow x=\dfrac{25}{11}\)

b) \(y\left(5-2y\right)+2y\left(y-1\right)=15\)

\(5y-2y^2+2y^2-2y=15\)

\(\Rightarrow5y-2y=15\)

\(\Rightarrow3y=15\)

\(\Rightarrow y=5\)

c)\(x\left(x+1\right)-\left(x+1\right)=35\)

\(\Rightarrow\left(x-1\right)\left(x+1\right)=35\)

\(\Rightarrow x^2-1=35\)

\(\Rightarrow x^2=36\)

\(\Rightarrow x=6;x=-6\)

d)\(x\left(x^2+x+1\right)-x^2\left(x+1\right)=0\)

\(x^3+x^2+x-x^3+x=0\)

\(\Rightarrow x^2+2x=0\)

\(\Rightarrow x\left(x+2\right)=0\)

\(\Rightarrow x=0;x=0-2=-2\)

Vậy \(x=0;x=-2\)

31 tháng 7 2018

\(2x^2+2y^2+z^2+2xy+2yz+2xz+10x+6y+34=0\)

\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2xz\right)+\left(x^2+10x+25\right)+\left(y^2+6y+9\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)^2+\left(x+5\right)^2+\left(y+3\right)^2=0\)

\(\Rightarrow x=-5,y=-3,z=8\)

25 tháng 6 2019

\(a.5x-20y\)

\(\Leftrightarrow5\left(x-4y\right)\)

\(b.14x^2y-21xy^2+28x^2y^2\)

\(\Leftrightarrow7xy\left(2x-3y+4xy\right)\)

\(c.x\left(x+y\right)-5x-5y\)

\(\Leftrightarrow x\left(x+y\right)-5\left(x+y\right)\)

\(\Leftrightarrow\left(x-5\right)\left(x+y\right)\)

\(d.10x\left(x-y\right)-8y\left(y-x\right)\)

\(\Leftrightarrow10x\left(x-y\right)+8y\left(x-y\right)\)

\(\Leftrightarrow2\left(5x+4y\right)\left(x-y\right)\)