K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2019

Ta có: \(4x=3y\)\(\Rightarrow\frac{x}{3}=\frac{y}{4}\)\(\Rightarrow\frac{x}{15}=\frac{y}{20}\)

\(7y=5z\)\(\Rightarrow\frac{y}{5}=\frac{z}{7}\)\(\Rightarrow\frac{y}{20}=\frac{z}{28}\)

\(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=k\)\(\Rightarrow\hept{\begin{cases}x=15k\\y=20k\\z=28k\end{cases}}\)

Ta có: \(yz-2x^2=110\)

\(\Rightarrow20k.28k-2.\left(15k\right)^2=110\)

\(\Rightarrow560k^2-2.225k^2=110\)

\(\Rightarrow560k^2-450k^2=110\)

\(\Rightarrow k^2\left(560-450\right)=110\)

\(\Rightarrow110k^2=110\)

\(\Rightarrow k^2=1\)

\(\Rightarrow\orbr{\begin{cases}k=1\\k=-1\end{cases}}\)

+) Khi k = 1, ta có: \(\hept{\begin{cases}x=15k\\y=20k\\z=28k\end{cases}}\Rightarrow\hept{\begin{cases}x=15.1\\y=20.1\\z=28.1\end{cases}}\Rightarrow\hept{\begin{cases}x=15\\y=20\\z=28\end{cases}}\)

+) Khi k = -1, ta có: \(\Rightarrow\hept{\begin{cases}x=15k\\y=20k\\z=28k\end{cases}}\Rightarrow\hept{\begin{cases}x=15.\left(-1\right)\\y=20.\left(-1\right)\\z=28.\left(-1\right)\end{cases}}\Rightarrow\hept{\begin{cases}x=-15\\y=-20\\z=-28\end{cases}}\)

Vậy...

Ta có: \(4x=3y\rightarrow\frac{x}{3}=\frac{y}{4}\rightarrow\frac{x}{15}=\frac{y}{20}\left(1\right)\)

          \(7y=5z\rightarrow\frac{y}{5}=\frac{z}{7}\rightarrow\frac{y}{20}=\frac{z}{28}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

Đặt \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=k\left(k\varepsilonℕ^∗\right)\)

=> x  = 15k; y = 20k; z = 28k

Có: \(yz-2x^2=110\)

\(\Rightarrow20k\cdot28k-2\cdot(15k)^2=110\)

\(\Rightarrow560\cdot k^2-2\cdot225\cdot k^2=110\)

\(\Rightarrow560\cdot k^2-450\cdot k^2=110\)

\(\Rightarrow\left(560-450\right)\cdot k^2=110\)

\(\Rightarrow110\cdot k^2=110\)            \(\Rightarrow k^2=1\)

\(\Rightarrow\orbr{\begin{cases}k=1\\k=-1\end{cases}}\)

\(x=15k\rightarrow\orbr{\begin{cases}x=15\\x=-15\end{cases}}\)

\(y=20k\rightarrow\orbr{\begin{cases}y=20\\y=-20\end{cases}}\)

\(z=28k\rightarrow\orbr{\begin{cases}z=28\\z=-28\end{cases}}\)

Vậy...........................

31 tháng 7 2016

a) ta co: x\5=y\3=z\4 va x+2y-z=-121

      Dat: x\5=y\3=z\4=k.suy ra: x=5k;y=3k;z=4k

                                              =5k+2.(3k)-4k

                                              =5k+6k-4k

                                              =7k=-121

                                              =-121:7k=-121\7

suy ra:x\5=-121\7suy ra: -121\7.5=-605\7

          y\3=-121\7 suy ra:-121\7.3=-363\7

          z\4=-121\7 suy ra:-121\7.3=-484\7

18 tháng 8 2018

Dạng tcdtsbn này học nhiều r mà!

a, \(3x=2y\&y-2x=5\Rightarrow\dfrac{y}{3}=\dfrac{x}{2}\&y-2x=5\)

\(\Rightarrow\dfrac{y}{3}=\dfrac{2x}{4}\&y-2x=5\)

Áp dụng tính chất DTSBN ta được:

\(\dfrac{y}{3}=\dfrac{2x}{4}=\dfrac{y-2x}{3-4}=\dfrac{5}{-1}=-5\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{y}{3}=-5\\\dfrac{x}{2}=-5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-10\\y=-15\end{matrix}\right.\)

b, \(2x=3y=5z\&2x-3y+z=6\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{2}\\\dfrac{y}{5}=\dfrac{z}{3}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{15}=\dfrac{y}{10}\\\dfrac{y}{10}=\dfrac{z}{6}\end{matrix}\right.\Rightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}\)

\(\Rightarrow\dfrac{2x}{30}=\dfrac{3y}{30}=\dfrac{z}{6}\&2x-3y+z=6\)

Áp dụng t/c dãy TSBN ta được:

\(\dfrac{2x}{30}=\dfrac{3y}{30}=\dfrac{z}{6}=\dfrac{2x-3y+z}{30-30+6}=\dfrac{6}{6}=1\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{15}=1\\\dfrac{y}{10}=1\\\dfrac{z}{6}=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=15\\y=10\\z=6\end{matrix}\right.\)

18 tháng 8 2018

a) Ta có: 3x = 2y và y - 2x = 5
=> \(\dfrac{y}{3}=\dfrac{x}{2}=\dfrac{2x}{4}=\dfrac{y-2x}{3-4}=\dfrac{5}{-1}\)
=> \(\dfrac{x}{2}\)\(=\) -5 =>
\(\dfrac{y}{3}=-5\) =>
(Bạn tự làm tiếp và ý b cũng tương tự nha)

28 tháng 4 2016

=>(x+2y-3)^2016=0 hoặc |2x+3y-5|=0

x+2y=3 hoặc 2x+3y=5

<=>x=3-2y

Ta có 2x+3y=5=>6-4y+3y=5

6-y=5

y=1

Ta có x+2y=3=>x+2*1=3

x+2=3

x=1

Vậy (x;y) =(1;1)