Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ð |x+1|3=(y+2013)2014(=0)
Ta có: |x+1|3 = |x+1|*|x+1|*|x+1|=0
ð |x+1|=0
ð x+1=0
ð x=0-1
ð x=-1
Ta có: (y+2013)2014=(y+2013)*…*(y+2013)=0
ð y+2013=0
ð y=0-2013
ð y=-2013
Vậy x=-1 và y=-2013
\(x-2014-\frac{2015}{2013}+x-2013-\frac{2015}{2014}+x-2014-\frac{2013}{2015}=3\)
\(\Rightarrow\left(x+x+x\right)+\left(-2014-2014\right)-2013-\frac{2015}{2013}-\frac{2015}{2014}-\frac{2013}{2015}=3\)
\(3x-2013-\frac{2015}{2013}-\frac{2015}{2014}-\frac{2013}{2015}=3\)
\(3x=3+2013+\frac{2015}{2013}+\frac{2015}{2014}+\frac{2013}{2015}\)
bạn ơi bài này số lớn quá bạn sử dungjmays tính rồi tự tính nhé
Đáp án của bạn Hoàng Đình Đại sai rùi nhưng dù sao cx cảm ơn nhiều
+) Nếu x đều lớn hơn 1 ; y lớn hơn hoặc = 0; z\(\ge\) 1:
Nhận xét: 2014x chia hết cho 2;
2013y không chia hết cho 2
2012z chia hết cho 2
=> 2013y + 2012z không chia hết cho 2
=> 2014x = 2013y + 2012z không xảy ra
+) Nếu x = 1 => 2014 = 2013y + 2012z => chỉ có y = 1; z =0 thoả mãn
+) Nếu x = 0 => 1 = 2013y + 2012z => không có y,z thoả mãn vì 2013y + 2012z nhỏ nhất = 1 + 1 = 2
Vậy chỉ có x = 1; y = 1; z = 0 thoả mãn
xét y=0 phương trình ko có nghiệm nguyên
xét x= 0 phương trình ko có nghiệm nguyên
xét x;y;z lớn hơn hoặc bằng 1 thì
2012^z chia hết cho 2
2013^y ko chia hết cho 2
=> 2012^z + 2013^y ko chia hết cho 2
mà 2014^x chia hết cho 2
=> vô lý
vậy phương trình có nghiệm (x;y;z)=(0;1;1)
`(x-2013)^{2014}+(y-2014)^{2014}=0`
Vì \((x-2013)^{2014} \ge 0\)
\((y-2014)^{2014} \ge 0\)
=> $\begin{cases} (x-2013)^{2014}=0\\(y-2014)^{2014}=0 \end{cases}$
=> $\begin{cases} x=2013\\y=2014 \end{cases}$