Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Theo t/c của dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{5}=\frac{x.y}{2.5}=\frac{90}{10}=9\)
\(\frac{x}{2}=9\Rightarrow x=9.2=18\)
\(\frac{y}{5}=9\Rightarrow y=9.5=45\)
Vậy x = 18 ; y = 45
Đặt \(k=\frac{x}{2}=\frac{y}{5}\)
Khi đó : \(k^2=\frac{xy}{2.5}=\frac{90}{10}=9\)
Suy ra : \(k=-3;3\)
+ k = -3 thì : \(\frac{x}{2}=-3\Rightarrow x=-6\)
\(\frac{y}{5}=-3\Rightarrow y=-15\)
+ k = 3 thì : \(\frac{x}{2}=3\Rightarrow x=6\)
\(\frac{y}{5}=3\Rightarrow y=15\)
mk thấy câu b) hơi khó ,mk lam giup bn
b) x/3 = y/3 = z/5
hay 2x/6 = 3y/9 z/5
ta có; ( 2x- 3y +z) / ( 6-9+5) = 6/2 =3
x = 3.2 =6
y = 3.2 =6
z = 5.2 =10
2). Ta có: x/2=y/3 => x/8 = y/12
y/4=z/5 => y/12 = z/15
=> x/2=y/12=z/15 và x+y-z=10
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{2}\)=\(\frac{y}{12}\)=\(\frac{z}{15}\)=\(\frac{x+y-z}{2+12-15}\)=\(\frac{10}{-1}\)= -10
=> x=2.(-10)=-20
y=12.(-10)=-120
z=15.(-10)=-150
Vậy x=-20; y=-120;z=-150
3). Đặt \(\frac{x}{2}\)=\(\frac{y}{5}\)= k
=> x=2k
y=5k
Ta có xy = 10
2k.5k =10
10. k2=10
k2 = 10 :10=1
=> k =1; k=-1
+) k = 1
=> x=2.1=2
y=5.1=5
+) k = -1
=> x= 2.(-1) =-2
y=5.(-1) = -5
Vậy x=2;y=5 hoặc x=-2;y=-5
Câu 2:
Ta có \(\frac{x}{2}=\frac{y}{3}=\frac{x}{8}=\frac{y}{12}\)(1)
\(\frac{y}{4}=\frac{z}{5}=\frac{y}{12}=\frac{z}{15}\)(2)
Từ (1) và (2) suy ra:\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng dãy tỉ số bằng nhau ta có:
\(\Rightarrow\)\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
\(\Rightarrow\begin{cases}\frac{x}{8}=2\\\frac{y}{12}=2\\\frac{z}{15}=2\end{cases}\)\(\Rightarrow\begin{cases}x=16\\y=24\\z=30\end{cases}\)
Vậy x=16;y=24;z=30
\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\)và x + y -z = 10
\(\frac{x}{2}=\frac{y}{3}=\frac{1}{4}.\frac{x}{2}=\frac{1}{4}.\frac{y}{3}\)\(=\frac{x}{8}=\frac{y}{12}\)
\(\frac{y}{4}=\frac{z}{5}=\frac{1}{3}.\frac{y}{4}=\frac{1}{3}.\frac{z}{5}=\frac{y}{12}=\frac{z}{15}\)
\(\Leftrightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)và x + y - z = 10
Theo tính chất dãy tỉ số bằng nhau:
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
* \(\frac{x}{8}=2\Rightarrow x=2.8=16\)
* \(\frac{y}{12}=2\Rightarrow y=2.12=24\)
* \(\frac{z}{5}=2\Rightarrow z=2.5=10\)
Vậy...
Ý mk nhầm chút xíu nhé! Cko sorry!
* \(\frac{z}{15}=2\Rightarrow z=2.15=30\)
... :( Xl
\(\frac{x}{2}=\frac{y}{5}\Leftrightarrow\left(\frac{x}{2}\right)^2=\frac{xy}{10}=\frac{90}{10}=9\)
\(\frac{x}{2}=\frac{y}{5}=3\)=> x = 6 ; y =15
\(\frac{x}{2}=\frac{y}{5}=-3\) => x =-6 ; y = -15
a) Ta có :
\(\frac{x}{11}=\frac{y}{7}\Leftrightarrow7x-11y=0\)
Ta có hệ : \(\hept{\begin{cases}7x-11y=0\\x+y=-54\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}7x-11y=0\\7x+7y=-378\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-18y=378\\7x+7y=-378\end{cases}\Leftrightarrow\hept{\begin{cases}y=-21\\x=-33\end{cases}}}\)
b, Ta có : \(\frac{x}{5}=\frac{y}{2}\Leftrightarrow2x=5y\)\(\Leftrightarrow x=\frac{5y}{2}\). Thay vào biểu thức x . y = 90 . Ta được :
\(\frac{5y}{2}\cdot y=90\Leftrightarrow\frac{5y^2}{2}=90\Leftrightarrow5y^2=180\Leftrightarrow\orbr{\begin{cases}y=6\\y=-6\end{cases}}\)
Với y = 6 => x = \(\frac{5\cdot6}{2}=15\)
Với y = -6 => x = \(\frac{5\cdot\left(-6\right)}{2}=-15\)
nhân cả hai vế \(\frac{x}{2}=\frac{y}{5}\)cho x ta được:
\(\frac{x^2}{2}=\frac{xy}{5}=\frac{90}{5}=18\)
suy ra: \(\frac{x^2}{2}=18\Rightarrow x^2=36\Rightarrow x=6\)hoặc \(x=-6\)
Với x=6 thì :
\(\frac{6}{2}=\frac{y}{5}\Rightarrow y=\frac{6.5}{2}=15\)
Với x=-6 thì :
\(\frac{-6}{2}=\frac{y}{5}\Rightarrow y=\frac{-6.5}{2}=-15\)
đặt \(\frac{x}{2}=\frac{y}{5}=k\)
\(\Rightarrow x=2k;y=5k\)
\(xy=2k.5k=k^22.5=k^2.10=90\)
\(k^2=90\div10=9\)
\(\Rightarrow k=\sqrt{9}=3;-3\)
th1 k=3
\(\Rightarrow x=2.3=6\)
\(\Rightarrow y=3.5=15\)
th2 k=-3
\(\Rightarrow x=-3.2=-6\)
\(\Rightarrow-3.5=-15\)