Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x}{7}=\dfrac{y}{9}=\dfrac{z}{11}\)
Áp dụng tính chất của dãy tỉ sô bằng nhau ta có :
\(\dfrac{x}{7}=\dfrac{y}{9}=\dfrac{z}{11}=\dfrac{y-x}{9-7}=\dfrac{-1}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{7}=\dfrac{-1}{2}\\\dfrac{y}{9}=\dfrac{-1}{2}\\\dfrac{z}{11}=\dfrac{-1}{2}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{-7}{2}\\y=\dfrac{-9}{2}\\z=\dfrac{-11}{2}\end{matrix}\right.\)
Ta có : \(\dfrac{x}{7}=\dfrac{y}{9}=\dfrac{z}{11}\)
Áp dụng tính chất dãy tỉ số bằng nhâu , ta có:
\(\dfrac{x}{7}=\dfrac{y}{9}=\dfrac{z}{11}=\dfrac{y-x}{9-7}=-\dfrac{1}{2}\\ \Rightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}.7=-\dfrac{7}{2}\\y=-\dfrac{1}{2}.9=-\dfrac{9}{2}\\z=-\dfrac{1}{2}.11=-\dfrac{11}{2}\end{matrix}\right.\)
Vậy \(x=-\dfrac{7}{2}\); \(y=-\dfrac{9}{2}\); \(z=-\dfrac{11}{2}\)
a) Ta có \(\dfrac{x}{4} = \dfrac{y}{7}\) và x + y = 55
Áp dụng tính chất tỉ lệ thức ta có : \(\dfrac{x}{4} = \dfrac{y}{7} = \dfrac{{x + y}}{{4 + 7}} = \dfrac{{55}}{{11}} = 5\)
\( \Rightarrow \dfrac{x}{4} = 5 \Rightarrow x = 20\)
\( \dfrac{y}{7} = 5 \Rightarrow y = 35\)
Vậy x = 20; y = 35
b) \(\dfrac{x}{8} = \dfrac{y}{3}\) và x – y = 35
Áp dụng tính chất tỉ lệ thức ta có : \(\dfrac{x}{8} = \dfrac{y}{3} = \dfrac{{x - y}}{{8 - 3}} = \dfrac{{35}}{5} = 7\)
\( \Rightarrow \dfrac{x}{8} = 7\) \( \Rightarrow \) x = 56
Mà x – y = 35 \( \Rightarrow \) y = 56 – 35 = 21
Vậy x = 56 ; y = 21
Ta có: \(\dfrac{x}{6}=\dfrac{y}{6}:\dfrac{y}{8}=\dfrac{z}{7}\)
\(\Leftrightarrow\dfrac{x}{6}=\dfrac{4}{3}=\dfrac{z}{7}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=8\\z=\dfrac{28}{3}\end{matrix}\right.\)
a) Áp dụng tính chất dãy tỉ số bằng nhau ta được:
X/3 = y/4 = x/3 + y/4 = 28/7 = 4
=> x = 4 × 3 = 12
=> y = 4 × 4 = 16
Vậy x = 12, y = 16
B) Áp dụng tính chất dãy tỉ số bằng nhau ta được:
X/2 = y/(-5) = x/2 - y/(-5) = (-7)/7 = -1
=> x = -1 × 2 = -2
=> y = -1 × -5 = 5
Vậy x = -2, y = 5
C) làm tương tự như bài a, b
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
x8=y12=z15=x+y−z8+12−15=105=2x8=y12=z15=x+y−z8+12−15=105=2
Do đó: x=16; y=24; z=30
1. Ta có: \(\dfrac{x}{-7}=\dfrac{y}{4}\Rightarrow\dfrac{2x}{-14}=\dfrac{3y}{12}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta được:
\(\dfrac{2x-3y}{-14-12}=\dfrac{-78}{-26}=3\)
=> \(\left\{{}\begin{matrix}x=-21\\y=12\end{matrix}\right.\)
2. Ta có:
- \(\dfrac{x}{y}=\dfrac{9}{7}\Rightarrow\dfrac{x}{9}=\dfrac{y}{7}\)
- \(\dfrac{y}{z}=\dfrac{7}{3}\Rightarrow\dfrac{y}{7}=\dfrac{z}{3}\)
=> \(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta được:
\(\dfrac{x-y+z}{9-7+3}=\dfrac{-15}{5}=-3\)
=> \(\left\{{}\begin{matrix}x=-27\\y=-21\\z=-9\end{matrix}\right.\)
\(x+y=55\Rightarrow x=55-y\\ \Leftrightarrow\dfrac{4+55-y}{7+y}=\dfrac{4}{7}\\ \Leftrightarrow28+385-7y=28+4y\\ \Rightarrow y=35\\ \Rightarrow x=55-35=20\)
\(\dfrac{x+4}{4}=\dfrac{y+7}{7}\)Theo tc dãy tỉ số bằng nhau
\(\dfrac{x+4}{4}=\dfrac{y+7}{7}=\dfrac{x+y+4+7}{11}=\dfrac{33}{11}=3\Leftrightarrow x=8;y=14\)
1) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{x+y}{5+7}=\dfrac{48}{12}=4\)
\(\dfrac{x}{5}=4\Rightarrow x=20\\ \dfrac{y}{7}=4\Rightarrow y=28\)
2) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{4}=\dfrac{y}{-7}=\dfrac{x-y}{4+7}=\dfrac{33}{11}=3\)
\(\dfrac{x}{4}=3\Rightarrow x=12\\ \dfrac{y}{-7}=3\Rightarrow y=-21\)
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{8}\)
\(\Rightarrow\dfrac{2x}{6}=\dfrac{y}{5}=\dfrac{z}{8}=\dfrac{2x+y-z}{6+5-8}=\dfrac{12}{3}=4\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{4\cdot6}{2}=12\\y=4\cdot5=20\\z=8\cdot4=32\end{matrix}\right.\)
Theo t/c dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{7}=\dfrac{y}{8}=\dfrac{y-x}{8-7}=\dfrac{4}{1}=4\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{7}=4\Rightarrow x=7.4=28\\\dfrac{y}{8}=4\Rightarrow y=8.4=32\end{matrix}\right.\)
Vậy..............
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{7}=\dfrac{y}{8}=\dfrac{y-x}{8-7}=\dfrac{4}{1}=4\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{7}=4\Rightarrow x=28\\\dfrac{y}{8}=4\Rightarrow y=32\end{matrix}\right.\)
Vậy .............
Chúc bạn học tốt!