Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Ta có: \(\left.\begin{matrix} \frac{x}{4} = \frac{y}{5} & & \\ \frac{y}{5} = \frac{z}{2} & & \end{matrix}\right\}\)
=> \(\frac{x}{4} = \frac{y}{5} = \frac{z}{2}\)
Theo tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{4} = \frac{y}{5} = \frac{z}{2} = \frac{x - y + z}{4 - 5 + 2}= \frac{98}{1}= 98\)
=> x = 98 * 4 = 392
y = 98 * 5 = 490
z = 196
Vậy x = 392, y = 490, z = 196
Bài 3:
Gọi x,y lần lượt là số cây trồng của lớp 7A, 7B
Theo đề bài ta có: \(\frac{x}{4} = \frac{y}{5}\) và y - x = 12
Theo tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{4} = \frac{y}{5}= \frac{y - x}{5 - 4}= \frac{12}{1}= 12\)
=> x = 12 * 4 = 48
y = 12 * 5= 60
Vậy lớp 7A trồng 48 cây
.......lớp 7B trồng 60 cây
1, \(4x=5y\)
mà \(y-2x=-5\)
\(\Rightarrow x=\frac{y+5}{2}\)
\(\Rightarrow\left(\frac{y+5}{2}\right).4=5y\)
\(\Rightarrow\frac{4y+20}{2}=5y\)
\(\Rightarrow2y+10=5y\)
\(\Rightarrow10=3y\)
\(\Rightarrow y=\frac{10}{3}\)
\(\Rightarrow x=\frac{y+5}{2}=\frac{\frac{10}{3}+5}{2}=\frac{\frac{25}{3}}{2}=\frac{25}{6}\)
Vậy \(x=\frac{25}{6};y=\frac{10}{3}\)
b, \(\frac{x}{3}=\frac{y}{4}\)
mà \(xy=192\)
Gọi \(x=3k\)
\(y=4k\)
\(\Rightarrow3k.4k=192\)
\(\Rightarrow12.k^2=192\)
\(\Rightarrow k^2=\frac{192}{12}\)
\(\Rightarrow k^2=16\)
\(\Rightarrow k^2=4^2\)
\(\Rightarrow k=4\)
\(\Rightarrow x=3k=3.4=12\)
\(\Rightarrow y=4k=4.4=16\)
Vậy \(x=12;y=16\)
\(\frac{x}{1}=\frac{4x}{4};\frac{y}{2}=\frac{3y}{6};\frac{z}{3}=\frac{2z}{6}\)
mà \(\frac{x}{1}=\frac{y}{3}=\frac{z}{2}\) nên \(\frac{4x}{4}=\frac{3y}{6}=\frac{2z}{6}\)
áp dụng t/c dãy các tỉ số bằng nhau ta có
\(\frac{4x}{4}=\frac{3y}{6}=\frac{2z}{6}=\frac{4x-3y+2z}{4-6+6}=\frac{36}{4}=9\)
nếu \(\frac{x}{1}=9=>x=9\)
Bài 1:Ta có:
\(\left(x-y\right)^2+\left(x+y\right)^2=50\)
\(4x=3y\Rightarrow\frac{x}{3}=\frac{y}{4}\)
Áp dụng tc dãy tỉ số ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{\left(x-y\right)^2+\left(x+y\right)^2}{\left(3-4\right)^2+\left(3+4\right)^2}=\frac{50}{50}=1\)
\(\Rightarrow\begin{cases}\frac{x}{3}=1\Rightarrow x=3\\\frac{y}{4}=1\Rightarrow y=4\end{cases}\)
Bài 2:Ta có:
\(\left(x+y\right)^3+\left(x-y\right)^3=2960\)
\(2x=5y\Rightarrow\frac{x}{5}=\frac{y}{2}\)
Áp dụng tc dãy tỉ số ta có:
\(\frac{x}{5}=\frac{y}{2}=\frac{\left(x+y\right)^3+\left(x-y\right)^3}{\left(5+2\right)^3+\left(5-2\right)^3}=\frac{2960}{370}=8\)
\(\Rightarrow\begin{cases}\frac{x}{5}=8\Rightarrow x=40\\\frac{y}{2}=8\Rightarrow y=16\end{cases}\)
Theo bài ra ta có:
\(4x=6y=8z\)và \(x-y=2\)
\(\Rightarrow4x.\frac{1}{24}=6y.\frac{1}{24}=8z.\frac{1}{24}\)
\(\Rightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}=\frac{x-y}{6-4}=\frac{2}{2}=1\)
\(\Rightarrow\hept{\begin{cases}x=1.6=6\\y=1.4=4\\z=1.3=3\end{cases}}\)
VẬY \(\hept{\begin{cases}x=6\\y=4\\z=3\end{cases}}\)
Bạn Áp dụng tinhs chất của dãy tỉ số bằng nhau là giải ra được
~~~~~~~ Chúc bạn học tốt ~~~~~~~~~~~~~
Ai đi qua nhớ để lại ks
a) x+y=30 nên x=30-y
thay vào ta có -2*(30-y)-5y=0
-60+2y-5y=0
-3y=60 nên y=-20
suy ra x=30-(-20)=50
Vì \(4x=5y\Rightarrow\frac{x}{5}=\frac{y}{4}\Rightarrow\frac{x^2}{25}=\frac{y^2}{16}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\Rightarrow\frac{x^2}{25}=\frac{y^2}{16}=\frac{x^2-y^2}{25-16}=\frac{1}{9}\)
\(\Rightarrow\left\{\begin{matrix}\frac{x}{5}=\frac{1}{9}\\\frac{y}{4}=\frac{1}{9}\end{matrix}\right.\)\(\Rightarrow\left\{\begin{matrix}x=\frac{5}{9}\\y=\frac{4}{9}\end{matrix}\right.\)
Từ 4x = 5y
=> \(\frac{x}{5}=\frac{y}{4}\) ( từ đẳng thức suy ra tỉ lệ thức )
\(=>\frac{x^2}{5^2}=\frac{y^2}{4^2}=>\frac{x^2}{25}=\frac{y^2}{16}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{25}=\frac{y^2}{16}=\frac{x^2-y^2}{25-16}=\frac{1}{9}\)
Do đó:
\(\frac{x}{5}=\frac{1}{9}=>x=5:9=\frac{5}{9}\)
\(\frac{y}{4}=\frac{1}{9}=>y=4:9=\frac{4}{9}\)
Vậy x = \(\frac{5}{9}\) và y = \(\frac{4}{9}\)