Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{y}=\frac{17}{3}\) => \(\frac{x}{17}=\frac{y}{3}=\frac{x+y}{17+3}=\frac{-60}{20}=-3\)
=> \(\hept{\begin{cases}\frac{x}{17}=-3\\\frac{y}{3}=-3\end{cases}}\) => \(\hept{\begin{cases}x=-51\\y=-9\end{cases}}\)
Vậy ....
2) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{19}=\frac{y}{21}\)=> \(\frac{2x}{38}=\frac{y}{21}=\frac{2x-y}{38-21}=\frac{34}{17}=2\)
=> \(\hept{\begin{cases}\frac{x}{19}=2\\\frac{y}{21}=2\end{cases}}\) => \(\hept{\begin{cases}x=38\\y=42\end{cases}}\)
vậy ...
3) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)
=> \(\hept{\begin{cases}\frac{x^2}{9}=4\\\frac{y^2}{16}=4\end{cases}}\) => \(\hept{\begin{cases}x^2=36\\y^2=64\end{cases}}\) => \(\hept{\begin{cases}x=\pm6\\y=\pm8\end{cases}}\)
Vậy ...
4) Ta có: \(\frac{x}{y}=\frac{10}{9}\) => \(\frac{x}{10}=\frac{y}{9}\)
\(\frac{y}{z}=\frac{3}{4}\) => \(\frac{y}{3}=\frac{z}{4}\) => \(\frac{y}{9}=\frac{z}{12}\)
=> \(\frac{x}{10}=\frac{y}{9}=\frac{z}{12}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{9}=\frac{z}{12}=\frac{x-y+z}{10-9+12}=\frac{78}{13}=6\)
=> \(\hept{\begin{cases}\frac{x}{10}=6\\\frac{y}{9}=6\\\frac{z}{12}=6\end{cases}}\) => \(\hept{\begin{cases}x=60\\y=54\\z=72\end{cases}}\)
Vậy ...
b)Thay x=1;y=1 vào biểu thức trên ta có:
3.1.1- 4.1.1+ 10.1.1- 1.1
=3-4+10-1
=(-1)+10-1
=9-1
=8
Vậy giá trị của biểu thức là:8
a) Thay x=1 vảo biểu thức trên ta có:
1^2- 5.1^2+ 11.1^2
=1-5.1+11.1
=1-5+11
=(-4)+11
=7
Vậy giá trị của biểu thức là: 7
c/ x^2011*y^2012+ 5x^2011*y^2012- 3x^2011*y^2012
b/ 3xy- 4xy+ 10xy- xy
b/ 3xy- 4xy+ 10xy- xy
a) Thay x=1 vảo biểu thức trên ta có:
1^2-5.1^2+11.1^2
=1-5.1+11.1
=1-5+11
=(-4)+11
=7
\(\text{Đầu bài viết khó nhìn thí mồ!! viết lại nhé!!}\)
\(\frac{x+1}{2013}+\frac{x+2}{2012}+\frac{x+3}{2011}=\frac{x-1}{2015}+\frac{x-2}{2016}+\frac{x-3}{2017}\)
\(\Rightarrow\frac{x+1}{2013}+1+\frac{x+2}{2012}+1+\frac{x+3}{2011}+1=\frac{x-1}{2015}+1+\frac{x-2}{2016}+1+\frac{x-3}{2017}+1\)
\(\Leftrightarrow\frac{x+2014}{2013}+\frac{x+2014}{2012}+\frac{x+2014}{2011}-\frac{x+2014}{2015}-\frac{x+2014}{2016}-\frac{x+2014}{2017}=0\)
\(\Leftrightarrow\left(x+2014\right)\left(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2015}-\frac{1}{2016}-\frac{1}{2017}\right)=0\)
\(\text{Mà }\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2015}-\frac{1}{2016}-\frac{1}{2017}\ne0\)
\(\text{Nên }x+2014=0\Leftrightarrow x=-2014\)
a: \(=3x^4+3x^2y^2+2x^2y^2+2y^4+y^2\)
\(=\left(x^2+y^2\right)\left(3x^2+2y^2\right)+y^2\)
\(=3x^2+3y^2=3\)
b: \(=7\left(x-y\right)+4a\left(x-y\right)-5=-5\)
c: \(=\left(x-y\right)\left(x^2+xy+y^2\right)+xy\left(y-x\right)+3=3\)
d: \(=\left(x+y\right)^2-4\left(x+y\right)+1\)
=9-12+1
=-2
Có: \(\left|3x-4y\right|^{2011}\ge0;\left(x^2+y^2-100\right)^{2012}\ge0\)
Mà theo đề bài: |3x - 4y|2011 + (x2 + y2 - 100)2012 = 0
\(\Rightarrow\begin{cases}\left|3x-4y\right|^{2011}=0\\\left(x^2+y^2-100\right)^{2012}=0\end{cases}\)\(\Rightarrow\begin{cases}3x-4y=0\\x^2+y^2-100=0\end{cases}\)\(\Rightarrow\begin{cases}3x=4y\\x^2+y^2=100\end{cases}\)
Ta có: 3x = 4y => x/4 = y/3 => x2/16 = y2/9
Áp dụng tính chất của dãy tỉ số = nhau ta có:
x2/16 = y2/9 = x2+y2/16+9 = 100/25 = 4
\(\Rightarrow\begin{cases}x^2=4.16=64\\y^2=4.9=36\end{cases}\)\(\Rightarrow\begin{cases}x\in\left\{8;-8\right\}\\y\in\left\{6;-6\right\}\end{cases}\)
Vậy các cặp giá trị (x;y) tương ứng thỏa mãn đề bài là: (8;6) ; (-8;-6)
cảm ơn bn nhìu nhá