Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{5}{6}-\dfrac{1}{2}\left(x-\dfrac{1}{3}\right)-\dfrac{2}{5}x=0\Rightarrow\dfrac{1}{2}\left(x-\dfrac{1}{3}\right)-\dfrac{2}{5}x=\dfrac{5}{6}\)
\(\Rightarrow\dfrac{1}{2}x-\dfrac{1}{6}-\dfrac{2}{5}x=\dfrac{5}{6}\Rightarrow\dfrac{1}{2}x-\dfrac{2}{5}x=\dfrac{5}{6}+\dfrac{1}{6}=1\)
\(\Rightarrow x\left(\dfrac{1}{2}-\dfrac{2}{5}\right)=1\Rightarrow\dfrac{1}{10}x=1\Rightarrow x=1:\dfrac{1}{10}=10\)
Vậy x = 10
a: \(\Leftrightarrow\left(x-1\right)^2=81\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=9\\x-1=-9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=10\\x=-8\end{matrix}\right.\)
1.
a) \(5x.5x.5x=\left(5x\right)^3.\)
b) \(x^1.x^2.....x^{2006}=x^{\frac{\left(2006+1\right).2006}{2}=}x^{2013021}.\)
c) \(x^1.x^4.x^7.....x^{100}=x^{\frac{\left(100+1\right).\left(\frac{100-1}{3}+1\right)}{2}}=x^{1717}.\)
d) \(x^2.x^5.x^8.....x^{2003}=x^{\frac{\left(2003+2\right).\left(\frac{2003-2}{3}+1\right)}{2}}=x^{669670}.\)
2.
\(2^x+80=3^y\)
Với \(x>0\Rightarrow2^x\) chẵn
Và 80 chẵn
\(\Rightarrow2^x+80\) chẵn.
Mà \(3^y\) lẻ
\(\Rightarrow x< 0.\)
Mà \(x\in N\)
\(\Rightarrow x=0.\)
\(\Rightarrow2^0+80=3^y\)
\(\Rightarrow1+80=3^y\)
\(\Rightarrow3^y=81\)
\(\Rightarrow3^y=3^4\)
\(\Rightarrow y=4.\)
Vậy \(\left(x;y\right)=\left(0;4\right).\)
Chúc bạn học tốt!
\(\left(2x-5\right)^{2006}+\left(3y+4\right)^{2008}=0\)
Vì \(\left\{{}\begin{matrix}\left(2x-5\right)^{2006}\ge0\forall x\\\left(3y+4\right)^{2008}\ge0\forall y\end{matrix}\right.\)\(\Rightarrow\left(2x-5\right)^{2006}+\left(3y+4\right)^{2008}\ge0\forall x,y\)
Dấu = xảy ra khi: \(\left\{{}\begin{matrix}\left(2x-5\right)^{2006}=0\\\left(3y+4\right)^{2008}=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-5=0\\3y+4=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{5}{2}\\y=-\frac{4}{3}\end{matrix}\right.\)
Vậy \(x=\frac{5}{2},y=-\frac{4}{3}\)
\(\left(2x-5\right)^{2006}+\left(3y+4\right)^{2008}=0\)
Ta có:
\(\left\{{}\begin{matrix}\left(2x-5\right)^{2006}\ge0\\\left(3y+4\right)^{2008}\ge0\end{matrix}\right.\forall x,y\)
\(\Rightarrow\left(2x-5\right)^{2006}+\left(3y+4\right)^{2008}\ge0\forall x,y.\)
\(\Rightarrow\left(2x-5\right)^{2006}+\left(3y+4\right)^{2008}=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(2x-5\right)^{2006}=0\\\left(3y+4\right)^{2008}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x-5=0\\3y+4=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x=5\\3y=-4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=5:2\\y=\left(-4\right):3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\frac{5}{2}\\y=-\frac{4}{3}\end{matrix}\right.\)
Vậy \(\left(x;y\right)\in\left\{\frac{5}{2};-\frac{4}{3}\right\}.\)
Chúc bạn học tốt!
xy + 2x - y = 5
=> x(y + 2) - y - 2 = 3
=> x(y + 2) - (y + 2) = 3
=> (x - 1)(y + 2) = 3
\(xy+2x-y=5\)
\(\Leftrightarrow x\left(y+2\right)-\left(y+2\right)=3\)
\(\Leftrightarrow\left(y+2\right)\left(x-1\right)=3\)
\(\Leftrightarrow y+2;x-1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
Ta có bảng