Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\Rightarrow 2x^2-10x-3x-2x^2=26\\ \Rightarrow -13x=26\\ \Rightarrow x=-2\\ b, \Rightarrow -2x^2+3x+3-3x-3+2x^2-x=18\\ \Rightarrow -x=18\Rightarrow x=-18\)
Câu 4 :
\(x^2+y^2-2\left(x-y-1\right)=0\)
\(\Leftrightarrow x^2+y^2-2x+2y+2=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y+1\right)^2=0\)
Do \(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\forall x\\\left(y+1\right)^2\ge0\forall y\end{matrix}\right.\)
\(\Rightarrow\left(x-1\right)^2+\left(y+1\right)^2\ge0\forall x;y\)
Dấu " = " xảy ra
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+1\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
Vậy \(x=1;y=-1\)
1a) -3x2(2x3 - 2x + 1/3) = -6x5 + 6x3 - x2
b) (x4 + 2x3 - 2/3).(-3x4) = -3x8 - 6x7 + 2x4
c) (x + 3)(x - 4) = x2 - 4x + 3x - 12 = x2 - x - 12
d)(x - 4)(x2 + 4x + 16) = (x - 4)(x2 + 4x + 42) = x3 - 64
e) 4(x - 1/2)(x + 1/2)(4x2 + 1) =4(x2 - 1/4)(4x2 + 1) = 4(4x4 + x2 - x2 - 1/4) = 4(4x4 - 1/4) = 16x4 - 1
B2. a) (2 - x)(x2 + 2x + 4) + x(x - 3)(x + 4) - x2 + 24 = 0
=> 8 - x3 + x(x2 + 4x - 3x - 12) - x2 + 24 = 0
=> 8 - x3 + x3 + x2 - 12x - x2 + 24 = 0
=> -12x + 32 = 0
=> -12x = -32
=> x = -32 : (-12) = 8/3
b) (x/2 + 3)(5 - 6x) + (12x - 2)(x/4 + 3) = 0
=> 5x/2 - 3x2 + 15 - 18x + 3x2 + 36x - x/2 - 6 = 0
=> 20x + 9 = 0
=> 20x = -9
=> x = -9/20
Câu 1:
a) 2x(3x+2) - 3x(2x+3) = 6x^2+4x - 6x^2-9x = -5x
b) \(\left(x+2\right)^3+\left(x-3\right)^2-x^2\left(x+5\right)\)
\(=x^3+6x^2+12x+8+x^2-6x+9-x^3-5x^2\)
\(=2x^2+6x+17\)
c) \(\left(3x^3-4x^2+6x\right)\div\left(3x\right)=x^2-\dfrac{4}{3}x+2\)
a: Ta có: \(x^2-4-\left(x+2\right)^2\)
\(=x^2-4-x^2-4x-4\)
=-4x-8
b: Ta có: \(\left(x+2\right)\left(x-2\right)-\left(x-3\right)\left(x+1\right)\)
\(=x^2-4-x^2+2x+3\)
=2x-1
c: ta có: \(\left(x-2\right)\left(x+2\right)-\left(x-2\right)\left(x+5\right)\)
\(=\left(x-2\right)\left(x+2-x-5\right)\)
\(=-3x+6\)
d: Ta có: \(\left(6x+1\right)^2-2\left(6x+1\right)\left(6x-1\right)+\left(6x-1\right)^2\)
\(=\left(6x+1-6x+1\right)^2\)
=4
e: ta có: \(7a\left(3a-5\right)+\left(2a-3\right)\left(4a+1\right)-\left(6a-2\right)^2\)
\(=21a^2-35a+8a^2+2a-12a-3-\left(36a^2-24a+4\right)\)
\(=29a^2-45a-3-36a^2+24a-4\)
\(=-7a^2-21a-7\)
g: ta có: \(\left(5y-3\right)\left(5y+3\right)-\left(5y-4\right)^2\)
\(=25y^2-9-25y^2+40y-16\)
=40y-25
h: Ta có: \(\left(3x+1\right)^3-\left(1-2x\right)^3\)
\(=27x^3+27x^2+9x+1-1+6x-12x^2+8x^3\)
\(=35x^3+15x^2+15x\)
i: Ta có: \(\left(2x+1\right)^2+2\left(4x^2-1\right)+\left(2x-1\right)^2\)
\(=\left(2x+1+2x-1\right)^2\)
\(=16x^2\)
\(\dfrac{12x^2-12x+3}{\left(6x-3\right)\left(5-x\right)}=\dfrac{3\left(4x^2-4x+1\right)}{3\left(2x-1\right)\left(5-x\right)}\\ =\dfrac{\left(2x-1\right)^2}{\left(2x-1\right)\left(5-x\right)}=\dfrac{2x-1}{5-x}=\dfrac{1-2x}{x-5}\)
ĐK: \(x\ne-\dfrac{2}{3};x\ne3\)
\(\dfrac{6x-1}{3x+2}=\dfrac{2x+5}{x-3}\Rightarrow\left(6x-1\right)\left(x-3\right)=\left(2x+5\right)\left(3x+2\right)\)
\(\Leftrightarrow6x^2-19x+3=6x^2+19x+10\Leftrightarrow38x=-7\Leftrightarrow x=-\dfrac{7}{38}\).
ĐKXĐ : x ≠ -2/3 ; x ≠ 3
\(\dfrac{6x-1}{3x+2}=\dfrac{2x+5}{x-3}\Rightarrow\left(6x-1\right)\left(x-3\right)=\left(3x+2\right)\left(2x+5\right)\)
\(\Leftrightarrow6x^2-19x+3=6x^2+19x+10\)
\(\Leftrightarrow-38x=7\Leftrightarrow x=-\dfrac{7}{38}\)(tm)
Vậy ...
Bài làm
x4 + x3 + 6x2 = -5( x + 1 )
<=> x4 + x3 + 6x2 = -5x - 5
<=> x4 + x3 + 6x2 + 5x + 5 = 0
<=> x4 + x3 + x2 + 5x2 + 5x + 5 = 0
<=> ( x4 + x3 + x2 ) + ( 5x2 + 5x + 5 ) = 0
<=> x2( x2 + x + 1 ) + 5( x2 + x + 1 ) = 0
<=> ( x2 + 5 )( x2 + x + 1 ) = 0
Mà x2 + x + 1 > 0
=> x2 + 5 = 0
<=> x2 = -5 ( vô lí )
=> phương trình trên vô nghiệm
Học dốt :)) bài bn lm tốt nhưng lần sau ko cần phải phân tích rồi ghép tích đâu , cách đấy hơi loằng ngoằng nhưng nếu muốn độ chính xác cao thì bn cx nên kham khảo bài bn ấy !
\(x^4+x^3-6x^2=-5\left(x+1\right)\)
\(x^4+x^3-6x^2=-5x-5\)
\(x^4+x^3-6x^2+5x+5=0\)
=> vô nghiệm