Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Áp dụng t/c dtsbn:
\(5x=7y\Rightarrow\dfrac{x}{7}=\dfrac{y}{5}=\dfrac{y-x}{5-7}=\dfrac{2}{-2}=-1\\ \Rightarrow\left\{{}\begin{matrix}x=-7\\y=-5\end{matrix}\right.\)
b, Áp dụng t/c dtsbn:
\(\dfrac{x}{y}=\dfrac{7}{2}\Rightarrow\dfrac{x}{7}=\dfrac{y}{2}=\dfrac{x+y}{7+2}=\dfrac{-27}{9}=-3\\ \Rightarrow\left\{{}\begin{matrix}x=-21\\y=-6\end{matrix}\right.\)
c, \(\dfrac{x}{32}=\dfrac{2}{x}\Rightarrow x^2=2\cdot32=64\Rightarrow\left[{}\begin{matrix}x=8\\x=-8\end{matrix}\right.\)
d, \(\left|x+\dfrac{1}{3}\right|-2=\dfrac{1}{2}\Rightarrow\left|x+\dfrac{1}{3}\right|=\dfrac{5}{2}\)
\(\Rightarrow\left[{}\begin{matrix}x+\dfrac{1}{3}=\dfrac{5}{2}\\x+\dfrac{1}{3}=-\dfrac{5}{2}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{13}{6}\\x=-\dfrac{17}{6}\end{matrix}\right.\)
Vì \(\left|x-5\right|\ge0\forall x\) ; \(\left|x-11\right|\ge0\forall x\)
\(\Rightarrow\left|x-5\right|+\left|x-11\right|\ge0\forall x\)
\(\Rightarrow3x\ge0\Rightarrow x\ge0\)
TH1 : x = 0
\(\Leftrightarrow\left|0-5\right|+\left|0-11\right|=0\Leftrightarrow5+11=0\left(vl\right)\) ( loại )
TH2 : 0 < x < 5
\(\Leftrightarrow-\left(x-5\right)+\left[-\left(x-11\right)\right]=3x\Leftrightarrow-x+5-x+11=3x\)
\(\Leftrightarrow-2x+16=3x\Leftrightarrow5x=16\Leftrightarrow x=\frac{16}{5}\left(tm\right)\)
TH3 : x > 11
\(\Leftrightarrow x-5+x-11=3x\Leftrightarrow2x-16=3x\Leftrightarrow-x=16\Leftrightarrow x=-16\left(ktm\right)\)
Vậy bt trên đúng \(\Leftrightarrow x=\frac{16}{5}\)