Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(\left(8x^2-4x\right):\left(-4x\right)-\left(x+2\right)=8\)
\(\Leftrightarrow-2x+1-x-2=8\)
\(\Leftrightarrow-3x=9\)
hay x=-3
b: Ta có: \(\left(2x^4-3x^3+x^2\right):\left(-\dfrac{1}{2}x^2\right)+4\left(x-1\right)^2=0\)
\(\Leftrightarrow-4x^2+6x-2+4x^2-8x+4=0\)
\(\Leftrightarrow-2x=-2\)
hay x=1
2:
=>x^3-1-2x^3-4x^6+4x^6+4x=6
=>-x^3+4x-7=0
=>x=-2,59
4: =>8x-24x^2+2-6x+24x^2-60x-4x+10=-50
=>-62x+12=-50
=>x=1
\(a,\Rightarrow4x^2-20x-4x^2+3x+4x-3=5\\ \Rightarrow-13x=8\Rightarrow x=-\dfrac{8}{13}\\ b,\Rightarrow3x^2-10x+8-3x^2+27x=-3\\ \Rightarrow17x=-11\Rightarrow x=-\dfrac{11}{17}\\ c,\Rightarrow\left(x+3\right)\left(2-x\right)=0\Rightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\\ d,\Rightarrow2x\left(4x^2-25\right)=0\\ \Rightarrow2x\left(2x-5\right)\left(2x+5\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{2}{5}\\x=-\dfrac{2}{5}\end{matrix}\right.\\ e,Sửa:\left(4x-3\right)^2-3x\left(3-4x\right)=0\\ \Rightarrow\left(4x-3\right)^2+3x\left(4x-3\right)=0\\ \Rightarrow\left(4x-3\right)\left(7x-3\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=\dfrac{3}{7}\end{matrix}\right.\)
a.
4x(x-5) - (x-1)(4x-3)-5=0
4x^2-20x-4x^2+3x+4x+3=0
(4x^2-4x^2)+(-20x+3x+4x)+3=0
13x+3 = 0
13x=-3
x=-3/13
b,
(3x-4)(x-2)-3x(x-9)+3=0
3x^2-6x-4x+8 - 3x^2+27x+3=0
(3x^2-3x^2)+(-6x-4x+27x)+(8+3)=0
17x+11=0
17x=-11
x=-11/17
c, 2(x+3)-x^2-3x=0
2(x+3) - x(x+3)=0
(x+3)(2-x)=0
TH1: x+3 = 0; x=-3
TH2: 2-x=0;x=2
a: \(x^3-4x^2-x+4=0\)
=>\(\left(x^3-4x^2\right)-\left(x-4\right)=0\)
=>\(x^2\left(x-4\right)-\left(x-4\right)=0\)
=>\(\left(x-4\right)\left(x^2-1\right)=0\)
=>\(\left[{}\begin{matrix}x-4=0\\x^2-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x^2=1\end{matrix}\right.\Leftrightarrow x\in\left\{2;1;-1\right\}\)
b: Sửa đề: \(x^3+3x^2+3x+1=0\)
=>\(x^3+3\cdot x^2\cdot1+3\cdot x\cdot1^2+1^3=0\)
=>\(\left(x+1\right)^3=0\)
=>x+1=0
=>x=-1
c: \(x^3+3x^2-4x-12=0\)
=>\(\left(x^3+3x^2\right)-\left(4x+12\right)=0\)
=>\(x^2\cdot\left(x+3\right)-4\left(x+3\right)=0\)
=>\(\left(x+3\right)\left(x^2-4\right)=0\)
=>\(\left(x+3\right)\left(x-2\right)\left(x+2\right)=0\)
=>\(\left[{}\begin{matrix}x+3=0\\x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\\x=-2\end{matrix}\right.\)
d: \(\left(x-2\right)^2-4x+8=0\)
=>\(\left(x-2\right)^2-\left(4x-8\right)=0\)
=>\(\left(x-2\right)^2-4\left(x-2\right)=0\)
=>\(\left(x-2\right)\left(x-2-4\right)=0\)
=>(x-2)(x-6)=0
=>\(\left[{}\begin{matrix}x-2=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)
\(1,x^2+4x+4=0\\ \Rightarrow\left(x+2\right)^2=0\\ \Rightarrow x+2=0\\ \Rightarrow x=-2\\ 2,x^2+4x+4=0\\ \Rightarrow\left(x+2\right)^2=0\\ \Rightarrow x+2=0\\ \Rightarrow x=-2\\ 3,\left(x+1\right)^2+2\left(x+1\right)=0\\ \Rightarrow\left(x+1\right)\left(x+1+2\right)=0\\ \Rightarrow\left(x+1\right)\left(x+3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x+1=0\\x+3=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\)
x2+4x+4=0
(x+2)2=0
x+2=0
x=+-2
câu 1 giống câu 2
(x+1)2+2(x+1)=0
(x+1+2)(x+1)=0
Th1: x+3=0 Th2: x+1=0
x=-3 x=-1
vậy ...
\(\left(x+2\right)\left(1-4x^2\right)=x^2+4x+4\)
\(\Leftrightarrow\left(x+2\right)\left(1-4x^2\right)=\left(x+2\right)^2\)
\(\Leftrightarrow\left(x+2\right)\left(4x^2+x+1\right)=0\)
\(\Leftrightarrow x+2=0\)( Do phương trình \(4x^2+x+1=0\)vô nghiệm.)
\(\Leftrightarrow x=-2\)
Vậy tập nghiệm của phương trình S = {-2}.