Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(7x-5=13-5x\)
\(\Leftrightarrow7x+5x=13+5\)
\(\Leftrightarrow12x=18\)
\(\Leftrightarrow x=\frac{3}{2}\)
b/\(5\left(2x-3\right)-4\left(5x-7\right)=19-2\left(x+11\right)\)
\(\Leftrightarrow10x-15-20x+28=19-2x-22\)
\(\Leftrightarrow10x-20x+2x=19-22-28+15\)
\(\Leftrightarrow-8x=-16\)
\(\Leftrightarrow x=2\)
c/ \(\frac{2x-1}{3}-\frac{5x+2}{7}=x+13\)
\(\Leftrightarrow\frac{7\left(2x-1\right)-3\left(5x+2\right)-21\left(x+13\right)}{21}=0\)
\(\Leftrightarrow14x-7-15x-6-21x-273=0\)
\(\Leftrightarrow-22x-286=0\)
\(\Leftrightarrow x=-13\)
e/ \(\frac{2}{x+1}-\frac{1}{x-2}=\frac{3x-11}{\left(x+1\right)\left(x+2\right)}\)
\(\Leftrightarrow\frac{2}{x+1}-\frac{1}{x-2}-\frac{3x-11}{\left(x+1\right)\left(x+2\right)}=0\)
\(\Leftrightarrow\frac{2\left(x-2\right)\left(x+2\right)-\left(x+1\right)\left(x+2\right)-\left(3x-11\right)\left(x-2\right)}{\left(x+1\right)\left(x-2\right)\left(x+2\right)}=0\)
\(\Leftrightarrow\frac{2\left(x^2-4\right)-\left(x^2+3x+2\right)-\left(3x^2-17x+22\right)}{\left(x+1\right)\left(x-2\right)\left(x+2\right)}=0\)
\(\Leftrightarrow2x^2-8-x^2-3x-2-3x^2+17x-22=0\)
\(\Leftrightarrow-2x^2+14x-32=0\)
\(\Leftrightarrow x^2-7x+16=0\)
\(\Leftrightarrow x=\frac{-\left(-7\right)\pm\sqrt{\left(-7\right)^2-4.1.16}}{2}\)
\(\Leftrightarrow x=\frac{7\pm\sqrt{-15}}{2}\left(ktm\right)\)
\(\Leftrightarrow x\in\varnothing\)
Bài 1:
a) \(7x-5=13-5x\)
\(\Leftrightarrow7x+5x=13+5\)
\(\Leftrightarrow12x=18\)
\(\Leftrightarrow x=18:12\)
\(\Leftrightarrow x=\frac{3}{2}.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{\frac{3}{2}\right\}.\)
b) \(5.\left(2x-3\right)-4.\left(5x-7\right)=19-2.\left(x+11\right)\)
\(\Leftrightarrow10x-15-\left(20x-28\right)=19-\left(2x+22\right)\)
\(\Leftrightarrow10x-15-20x+28=19-2x-22\)
\(\Leftrightarrow13-10x=-3-2x\)
\(\Leftrightarrow13+3=-2x+10x\)
\(\Leftrightarrow16=8x\)
\(\Leftrightarrow x=16:8\)
\(\Leftrightarrow x=2.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{2\right\}.\)
c) \(\frac{2x-1}{3}-\frac{5x+2}{7}=x+13\)
\(\Leftrightarrow\frac{7.\left(2x-1\right)}{7.3}-\frac{3.\left(5x+2\right)}{3.7}=\frac{21.\left(x+13\right)}{21}\)
\(\Leftrightarrow\frac{14x-7}{21}-\frac{15x+6}{21}=\frac{21x+273}{21}\)
\(\Leftrightarrow14x-7-\left(15x+6\right)=21x+273\)
\(\Leftrightarrow14x-7-15x-6=21x+273\)
\(\Leftrightarrow-x-13=21x+273\)
\(\Leftrightarrow-x-21x=273+13\)
\(\Leftrightarrow-22x=286\)
\(\Leftrightarrow x=286:\left(-22\right)\)
\(\Leftrightarrow x=-13.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{-13\right\}.\)
Chúc bạn học tốt!
Bài làm
a) \(\frac{4x-5}{8xy}+\frac{5-y}{8xy}=\frac{4x-5+5-y}{8xy}=\frac{4x-y}{8xy}\)
b) \(\frac{4x^2}{x-2}+\frac{3}{x-2}+\frac{19}{2-x}=\frac{4x^2}{x-2}+\frac{3}{x-2}-\frac{19}{x-2}=\frac{4x^2+3-19}{x-2}=\frac{4x^2-16}{x-2}=\frac{2\left(x-2\right)\left(2x+4\right)}{x-2}=2\left(2x+4\right)\)
c) \(\frac{2x^3+5}{x^2-x+1}-\frac{x^3+4}{x^2-x+1}=\frac{2x^3+5-x^3-4}{x^2-x+1}=\frac{2x^2-x^3+1}{x^2-x+1}\)
d) \(\frac{6}{5x-20}-\frac{x-5}{x^2-8x+16}=\frac{6}{5\left(x-4\right)}-\frac{x-5}{\left(x-4\right)^2}=\frac{6\left(x-4\right)}{5\left(x-4\right)^2}-\frac{\left(x-5\right)5}{5\left(x-4\right)^2}=\frac{6x-4-5x+25}{5\left(x-4\right)^2}=\frac{x+21}{5\left(x-4\right)^2}\)
# Học tốt #
Đây mình trả lời với x là số thực.
1) x^2 - 6x + 10 = (x^2 - 6x + 9) + 1 = (x - 3)^2 + 1. >= 0 + 1 = 1. (Số chính phương luôn >= 0 với mọi x).
Vậy GTNN của biểu thức trên là 1. Dấu "=" xảy ra <=> x = 3.
2) x^2 - 8x + 19 = (x^2 - 8x + 16) + 3 = (x - 4)^2 + 3 >= 0 + 3 = 3.
Vậy GTNN của biểu thức trên là 1. Dấu "=" xảy ra <=> x = 4.
3) 3x^2 - 6x + 5 = (3x^2 - 6x + 3) + 2 = 3.(x - 1)^2 + 2 >= 0 + 2 = 2.
Vậy GTNN của biểu thức trên là 2. Dấu "=" xảy ra <=> x = 1.
4) x^2 + x + 1 = (x^2 + x + 1/4) + 3/4 = (x + 1/2)^2 + 3/4 >= 0 + 3/4 = 3/4.
Vậy GTNN của biểu thức trên là 3/4. Dấu "=" xảy ra <=> x = -1/2.
5) x^2 + 10x + 27 = (x^2 + 10x + 25) + 2 = (x + 5)^2 + 2 >= 0 + 2 = 2.
Vậy GTNN của biểu thức trên là 2. Dấu "=" xảy ra <=> x = -5.
6) 4x^2 + 4x + 2 = (4x^2 + 4x + 1) + 1 = (2x + 1)^2 + 1 >= 0 + 1 = 1.
Vậy GTNN của biểu thức trên là 1. Dấu "=" xảy ra <=> x = -1/2.
7) 16x^2 + 16x + 25 = (16x^2 + 16x + 4) + 21 = 4.(2x + 1)^2 + 21 >= 0 + 21 = 21.
Vậy GTNN của biểu thức trên là 21. Dấu "=" xảy ra <=> x = -1/2.
8) 9x^2 - 12x + 5 = (9x^2 - 12x + 4) + 1 = (3x - 2)^2 + 1 >= 0 + 1 = 1.
Vậy GTNN của biểu thức trên là 1. Dấu "=" xảy ra <=> x = 2/3.
9) 49x^2 - 28x + 7 = (49x^2 - 28x + 4) + 3 = (7x - 2)^2 + 3 >= 0 + 3 = 3.
Vậy GTNN của biểu thức là 3. Dấu "=" xảy ra <=> x = 2/7.
10) 30 - 6x + x^2 = (x^2 - 6x + 9) + 21 = (x - 3)^2 + 21 >= 0 + 21 = 21.
Vậy GTNN của biểu thức là 21. Dấu "=" xảy ra <=> x = 3.
11) (1/4).x^2 + x + 3 = ((1/4).x + x + 1) + 2 = ((1/2).x + 1)^2 + 2 >= 0 + 2 = 2.
Vậy GTNN của biểu thức là 2. Dấu "=" xảy ra <=> x = -2.
Lần sau nếu như đề bài yêu cầu tìm GTNN của 1 biểu thức thì bạn tìm xem biểu thức đó >= bao nhiêu nhé, và giá trị đó sẽ là GTNN của biểu thức đã cho. Còn nếu như đề bài yêu cầu tìm GTLN của 1 biểu thức thì bạn làm ngược lại.
a) \(\dfrac{x}{x-3}+\dfrac{9-6x}{x^2-3x}=\dfrac{x^2}{x\left(x-3\right)}+\dfrac{9-6x}{x\left(x-3\right)}=\dfrac{x^2-6x+9}{x\left(x-3\right)}=\dfrac{\left(x-3\right)^2}{x\left(x-3\right)}=\dfrac{x-3}{x}\)
\(2x^2-7x+3=2x^2-6x-x+3=2x\left(x-3\right)-\left(x-3\right)=\left(2x-1\right)\left(x-3\right)\)
\(3x^2+7x-76=3x^2-12x+19x-76=3x\left(x-4\right)+19\left(x-4\right)=\left(3x+19\right)\left(x-4\right)\)
\(\dfrac{1}{2}x^2-\dfrac{19}{6}x+1=\dfrac{1}{2}x^2-3x-\dfrac{1}{6}x+1=x\left(\dfrac{x}{2}-3\right)-\dfrac{1}{3}\left(\dfrac{x}{2}-3\right)=\left(x-\dfrac{1}{3}\right)\left(\dfrac{x}{2}-3\right)\)
\(2x^2-5x-3\): sai đề
\(15x^2-x-6=15x^2-10x+9x-6=5x\left(3x-2\right)+3\left(3x-2\right)=\left(5x+3\right)\left(3x-2\right)\)
\(3x^2+5x-2=3x^2+6x-x-2=3x\left(x+2\right)-\left(x+2\right)=\left(3x-1\right)\left(x+2\right)\)
\(\left(x+1\right)^3-\left(x-1\right)^3-6\left(x-1\right)^2=-19\)
\(\Leftrightarrow\left(x+1-x+1\right)\left(\left(x+1\right)^2+\left(x+1\right)\left(x-1\right)+\left(x-1\right)^2\right)-6\left(x-1\right)^2=-19\)
\(\Leftrightarrow2\left(x^2+2x+1+x^2-1+x^2-2x+1\right)-6\left(x-1\right)^2=-19\)
\(\Leftrightarrow2\left(3x^2+1\right)-6\left(x^2-2x+1\right)=-19\)
\(\Leftrightarrow6x^2+2-6x^2+12x-6=-19\)
\(\Leftrightarrow12x-4=-19\)
\(\Leftrightarrow12x=-19+4\)
\(\Leftrightarrow12x=-15\)
\(\Leftrightarrow x=-\frac{5}{4}\)