Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. (x - 1)^3 + 3.(x - 3)^2 - (x + 2).(x^2 - 2x + 4) = (x + 2)^3 - (x - 3).(x^2 + 9) - 6x^2 + 5
<=> x^3 - 3x^2 + 3x - 1 + 3(x^2 - 6x + 9) - (x^3 + 2^3)
= x^3 + 6x^2 + 12x + 8 - (x^3 - 3x^2 + 9x -27) - 6x^2 + 5
<=> x^3 - 3x^2 + 3x - 1 + 3x^2 - 18x + 27 - x^3 - 8
= x^3 + 6x^2 + 12x + 8 - x^3 + 3x^2 - 9x + 27 - 6x^2 + 5
<=> 3x - 18x -12x - 3x^2 + 9x = 27 + 5 + 8 + 8 + 1 - 27
<=> - 3x^2 - 18x - 22 = 0
<=> 3x^2 + 18x + 22 = 0
Nửa chu vi mảnh đất là:
120 : 2 = 60 (m)
Chiều dài hơn chiều rộng là:
5 + 5 = 10 (m)
Chiều rộng là:
( 60 - 10 ) : 2 = 25 (m)
Chiều dài là:
25 + 10 = 35 (m)
Diện tích là:
25 35 = 875 ( )
a) \(\left(x-1\right)^3\)
\(=x^3-3x^2+3x-1\)
b) \(\left(2x-3y\right)^3\)
\(=\left(2x\right)^3-3\left(2x\right)^23y+3.2x\left(3y\right)^3+\left(3y\right)^3\)
\(=8x^3-36x^2y+54xy^2-27y^3\)
Bài 3:
a: Ta có: \(\left(x-2\right)^3-x^2\left(x-6\right)=5\)
\(\Leftrightarrow x^3-6x^2+12x-8-x^3+6x^2=5\)
\(\Leftrightarrow12x=13\)
hay \(x=\dfrac{13}{12}\)
b: Ta có: \(\left(x-1\right)\left(x^2+x+1\right)-x\left(x+2\right)\left(x-2\right)=4\)
\(\Leftrightarrow x^3-1-x^3+4x=4\)
\(\Leftrightarrow4x=5\)
hay \(x=\dfrac{5}{4}\)
a: Ta có: \(\left(x+1\right)^3-\left(x+2\right)\left(x-1\right)^2-3\left(x-3\right)\left(x+3\right)=5\)
\(\Leftrightarrow x^3+3x^2+3x+1-\left(x+2\right)\left(x^2-2x+1\right)-3\left(x^2-9\right)=5\)
\(\Leftrightarrow x^3+3x^2+3x+1-\left(x^3-2x^2+x+2x^2-4x+2\right)-3\left(x^2-9\right)=5\)
\(\Leftrightarrow x^3+3x^2+3x+1-x^3+3x-2-3x^2+9=5\)
\(\Leftrightarrow6x=-3\)
hay \(x=-\dfrac{1}{2}\)
b: Ta có: \(\left(x+1\right)^3+\left(x-1\right)^3=\left(x+2\right)^3+\left(x-2\right)^3\)
\(\Leftrightarrow x^3+3x^2+3x+1+x^3-3x^2+3x-1=x^3+6x^2+12x+8+x^3-6x^2+12x-8\)
\(\Leftrightarrow2x^3+6x=2x^3+24x\)
\(\Leftrightarrow x=0\)
c: Ta có: \(\left(x+1\right)^3-\left(x-1\right)^3-6\left(x-1\right)^2=-10\)
\(\Leftrightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1-6x^2+12x-1=-10\)
\(\Leftrightarrow12x=-11\)
hay \(x=-\dfrac{11}{12}\)
\(\Leftrightarrow x^2-4-x^2-3x=5\Leftrightarrow-3x=9\Leftrightarrow x=-3\left(B\right)\)
\(\Leftrightarrow x^3-3x^2+3x-1-x^3-8+3\left(x^2-6x+9\right)=x^3+6x^2+12x+8-x^3-9x+3x^2+27-6x^2+5\)
\(\Leftrightarrow-3x^2+3x-9+3\left(x^2-6x+9\right)=3x^2+3x+40\)
\(\Leftrightarrow-3x^2+3x-9+3x^2-18x+27-3x^2-3x-40=0\)
\(\Leftrightarrow-3x^2-18x-22=0\)
\(\Leftrightarrow3x^2+18x+22=0\)
\(\Delta=18^2-4\cdot3\cdot22=60\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-18-2\sqrt{15}}{6}=\dfrac{-9-\sqrt{15}}{3}\\x_2=\dfrac{-18+2\sqrt{15}}{6}=\dfrac{-9+\sqrt{15}}{3}\end{matrix}\right.\)
a: \(A=\dfrac{x^2-5x+6-x^2+x+2x^2-6}{x\left(x-3\right)}=\dfrac{2x^2-4x}{x\left(x-3\right)}=\dfrac{2x}{x-3}\)
\(\Leftrightarrow6\left(x^2-x-6\right)-3\left(x^2-4x+4\right)-3\left(x^2-1\right)=1\)
\(\Leftrightarrow6x^2-6x-36-3x^2+12x-12-3x^2+3=1\)
\(\Leftrightarrow6x=46\)
hay x=23/3
a: (x+1)^3-x(x-2)^2+x-1=0
=>x^3+3x^2+3x+1-x(x^2-4x+4)+x-1=0
=>x^3+3x^2+4x-x^3+4x^2-4x=0
=>7x^2=0
=>x=0
b: =>x^3-3x^2+3x-1-x^3-27+3x^2-12=2
=>3x=2+1+27+12=39+3=42
=>x=14
Ta có: x + 3 = (x + 3)2
<=>x + 3 - (x + 3)2= 0
<=>(x + 3)(- 2 -x)=0
<=>x=-3 hoặc x=-2
x + 3 = (x + 3)2
<=> x + 3 = x2 + 6x + 9
<=> x + 3 - x2 - 6x - 9 = 0
<=> -5x - 6 - x2 = 0
<=> x2 + 5x + 6 = 0
<=> (x + 2)(x + 3) = 0
<=> x + 2 = 0 hoặc x + 3 = 0
<=> x = -2 x = -3
=> x = -2 hoặc x = -3