K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2017

\(\dfrac{x-17}{1997}+\dfrac{x-21}{1993}+\dfrac{x+2}{1008}=4\)

\(\Leftrightarrow\dfrac{x-17}{1997}-1+\dfrac{x-21}{1993}-1+\dfrac{x+2}{1008}-2=0\)\(\Leftrightarrow\dfrac{x-2014}{1997}+\dfrac{x-2014}{1993}+\dfrac{x-2014}{1008}=0\) \(\Leftrightarrow\left(x-2014\right)\left(\dfrac{1}{1993}+\dfrac{1}{1997}+\dfrac{1}{1008}\right)=0\)\(\dfrac{1}{1993}+\dfrac{1}{1997}+\dfrac{1}{1008}\ne0\Rightarrow x-2014=0\Rightarrow x=2014\)

6 tháng 6 2017

cảm ơn bạn nhiều

6 tháng 8 2018

\(\frac{x-17}{1997}+\frac{x-21}{1993}+\frac{x+2}{1008}=4\)

\(\Leftrightarrow\frac{x-17}{1997}+\frac{x-21}{1993}+\frac{x+2}{1008}-4=0\)

\(\Leftrightarrow\left(\frac{x-17}{1997}-1\right)+\left(\frac{x-21}{1993}-1\right)+\left(\frac{x+2}{1008}-2\right)=0\)

\(\Leftrightarrow\left(\frac{x-17}{1997}-\frac{1997}{1997}\right)+\left(\frac{x-21}{1993}-\frac{1993}{1993}\right)+\left(\frac{x+2}{1008}-\frac{2016}{1008}\right)=0\)

\(\Leftrightarrow\frac{x-2014}{1997}+\frac{x-2014}{1993}+\frac{x-2014}{1008}=0\)

\(\Leftrightarrow\left(x-2014\right)\left(\frac{1}{1997}+\frac{1}{1993}+\frac{1}{1008}\right)=0\)

\(\Leftrightarrow x-2014=0\)

\(\Leftrightarrow x=2014\)

=.= hok tốt!!

27 tháng 2 2020

Ta có : \(\frac{x-1991}{9}+\frac{x-1993}{7}+\frac{x-1995}{5}+\frac{x-1997}{3}+\frac{x-1999}{1}\)\(=\frac{x-9}{1991}+\frac{x-7}{1993}+\frac{x-5}{1995}+\frac{x-3}{1997}+\frac{x-1}{1999}\)

\(\Rightarrow\left(\frac{x-1991}{9}-1\right)+\left(\frac{x-1993}{7}-1\right)+\left(\frac{x-1995}{5}-1\right)+\left(\frac{x-1997}{3}-1\right)+\left(\frac{x-1999}{1}-1\right)\)

\(=\left(\frac{x-9}{1991}-1\right)+\left(\frac{x-7}{1993}-1\right)+\left(\frac{x-5}{1995}-1\right)+\left(\frac{x-3}{1997}-1\right)+\left(\frac{x-1}{1999}\right)\)

\(\Rightarrow\frac{x-2000}{9}+\frac{x-2000}{7}+\frac{x-2000}{5}+\frac{x-2000}{3}\)

\(=\frac{x-2000}{1991}+\frac{x-2000}{1993}+\frac{x-2000}{1995}+\frac{x-2000}{1997}+\frac{x-2000}{1999}\)

\(\Rightarrow\left(x-2000\right)\left(\frac{1}{9}+\frac{1}{7}+\frac{1}{5}+\frac{1}{3}\right)=\left(x-2000\right)\left(\frac{1}{1991}+\frac{1}{1993}+\frac{1}{1995}+\frac{1}{1997}+\frac{1}{1999}\right)\)

\(\Rightarrow\left(x-2000\right)\left(\frac{1}{9}+\frac{1}{7}+\frac{1}{5}+\frac{1}{3}\right)-\left(x-2000\right)\left(\frac{1}{1991}+\frac{1}{1993}+\frac{1}{1995}+\frac{1}{1997}+\frac{1}{1999}\right)=0\)

\(\Rightarrow\left(x-2000\right)\left[\left(\frac{1}{9}+\frac{1}{7}+\frac{1}{5}+\frac{1}{3}\right)-\left(\frac{1}{1991}+\frac{1}{1993}+\frac{1}{1995}+\frac{1}{1997}+\frac{1}{1999}\right)\right]=0\)

Vì \(\left(\frac{1}{9}+\frac{1}{7}+\frac{1}{5}+\frac{1}{3}\right)-\left(\frac{1}{1991}+\frac{1}{1993}+\frac{1}{1995}+\frac{1}{1997}+\frac{1}{1999}\right)\ne0\)

=> x - 2000 = 0 

=> x = 2000

a: \(\Leftrightarrow x^2+10x+25-x^2+4x=55\)

=>14x=30

hay x=15/7

b: \(\Leftrightarrow\left(x-7\right)\left(x-3\right)=0\)

hay \(x\in\left\{7;3\right\}\)

13 tháng 6 2018

Ta có : 

\(4x\left(x-1\right)-3\left(x^2-5\right)-x^2=\left(x-3\right)-\left(x+4\right)\)

\(\Leftrightarrow\)\(4x^2-4x-3x^2+15=x-3-x-4\)

\(\Leftrightarrow\)\(x^2-4x+15=-7\)

\(\Leftrightarrow\)\(\left(x^2-2.x.2+2^2\right)+11=-7\)

\(\Leftrightarrow\)\(\left(x-2\right)^2=-18\)

Mà \(\left(x-2\right)^2\ge0\) \(\left(\forall x\inℝ\right)\)

\(\Rightarrow\)\(x\in\left\{\varnothing\right\}\)

Vậy không có giá trị nào của x thoã mãn đề bài 

Chúc bạn học tốt ~ 

3 tháng 8 2023

a

\(x+x^2-x^3-x^4=0\\ \Leftrightarrow x\left(1+x\right)-x^3\left(1+x\right)=0\\ \Leftrightarrow\left(1+x\right)\left(x-x^3\right)=0\\ \Leftrightarrow\left(1+x\right).x.\left(1-x^2\right)=0\\ \Leftrightarrow\left(1+x\right).x.\left(1-x\right)\left(1+x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)

b

x^3 chứ: )

\(x^3+27+\left(x+3\right)\left(x-9\right)=0\\ \Leftrightarrow x^3+3^3+\left(x+3\right)\left(x-9\right)=0\\ \Leftrightarrow\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\\ \Leftrightarrow\left(x+3\right)\left(x^2-3x+9+x-9\right)=0\\ \Leftrightarrow\left(x+3\right)\left(x^2-2x\right)=0\\ \Leftrightarrow\left(x+3\right).x.\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=2\end{matrix}\right.\)

=>3x^2+1/6x-3x^2-x-2=3

=>-5/6x=5

=>x=-6