Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(A\) là số nguyên thì \(\left(n+1\right)⋮\left(n-3\right)\)
Ta có :
\(n+1=n-3+4\) chia hết cho \(n-3\) \(\Rightarrow\) \(4⋮\left(n-3\right)\) \(\left(n-3\right)\inƯ\left(4\right)\)
Mà \(Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
Suy ra :
\(n-3\) | \(1\) | \(-1\) | \(2\) | \(-2\) | \(4\) | \(-4\) |
\(n\) | \(4\) | \(2\) | \(5\) | \(1\) | \(7\) | \(-1\) |
Vậy \(n\in\left\{4;2;5;1;7;-1\right\}\)
Để \(A\in Z\Leftrightarrow\left(n+8\right)⋮\left(2n-5\right)\)
Giả sử\(\left(n+8\right)⋮\left(2n-5\right)\)
\(\Leftrightarrow2\left(n+8\right)⋮\left(2n-5\right)\)
\(\Leftrightarrow2n+16⋮\left(2n-5\right)\)
\(\Leftrightarrow2n-5+21⋮\left(2n-5\right)\)
Do \(2n-5⋮2n-5\)
\(\Rightarrow21⋮\left(2n-5\right)\)
\(\Rightarrow\left(2n-5\right)\inƯ\left(21\right)\)
Ta có bảng sau:
2n-5 | -21 | -7 | -3 | -1 | 1 | 3 | 7 | 21 |
2n | -16 | -2 | 2 | 4 | 6 | 8 | 12 | 26 |
n | -8 | -1 | 1 | 2 | 3 | 4 | 6 | 13 |
Do \(n\inℕ^∗\Rightarrow n\in\left\{1;2;3;4;6;13\right\}\)
vì /x/ > 0; /x+1/> 0; /x+2/>0;/x+3/>0 suy ra /x/+/x+1/+/x+2/+/x+3/>0 suy ra 6x>0 suy ra x>0
với x>0 ta có x+x+1+x+2+x+3=6x
4x+6=6x
6=6x-4x
6= 2x
suy ra x= 3
đúng 100 % đó
nhớ và kb nha
xét x < 0 thì |x| lớn hơn hoặc bằng 0
|x+1| lớn hơn hoặc bằng 0
|x+2| lớn hơn hoặc bằng 0
|x+3| lớn hơn hoặc bằng 0
mà 6x bé hơn hoặc bằng 0 =>dấu bằng không xảy ra => không có x thõa mãn
xét x lớn hơn hoặc bằng 0 thì
|x|+|x+1|+|x+2|+|x+3|=6x
=x+x+1+x+2+x+3=6x
<=>4x+6 =6x
<=>6 =6x-4x=2x
=>x=3
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left[x+1\right]}=\frac{2007}{2009}\)
\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left[x+1\right]}=\frac{2007}{2009}\)
\(2\left[\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{x\left[x+1\right]}\right]=\frac{2007}{2009}\)
\(2\left[\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right]=\frac{2007}{2009}\)
\(2\left[\frac{1}{2}-\frac{1}{x+1}\right]=\frac{2007}{2009}\)
\(1-\frac{2}{x+1}=\frac{2007}{2009}\)
\(\frac{2}{x+1}=1-\frac{2007}{2009}\)
\(\frac{2}{x+1}=\frac{2}{2009}\)
\(\Rightarrow x+1=2009\Leftrightarrow x=2008\)
\(n+6⋮n+2\)
\(\Leftrightarrow n+2+4⋮n+2\)
Mà \(n+2⋮n+2\)
\(\Rightarrow4⋮n+2\)
\(\Rightarrow n+2\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
\(\Rightarrow n\in\left\{-1;-3;0;-4;2;-6\right\}\)
\(\left(x+3\right)⋮\left(x+1\right)\)
\(\Rightarrow x+1+2⋮x+1\)
\(\Rightarrow2⋮x+1\)
\(\Rightarrow x+1\inƯ\left(2\right)\left\{1,-1,-2,2\right\}\)
\(\Rightarrow x\inƯ\left(2\right)=\left\{-1,-2,1,2\right\}\)