K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2019

1/x - y/6 = 1/3

=> 1/x = 1/3 + y/6

=> 1/x = 2+y/6

=> 6 = x(y + 2)

=> x; y + 2 thuộc Ư(6) = {-1; 1; -2; 2; -3; 3; -6; 6}

ta có bảng : 

x-11-22-33-66
y+2-66-33-22-11
y-84-51-40-3-1

vậy_

b, x/2 + 3/y = 5/4

=> 3/y = x/2 - 5/4

=> 3/y = 2x-5/4

=> 12 = y(2x - 5)

xét bảng như phần a

\(\frac{1}{x}-\frac{y}{6}=\frac{1}{3}\Rightarrow\frac{6-xy}{6x}=\frac{1}{3}\Rightarrow18-3xy=6x\)

\(\Rightarrow6x-3xy=18\)

\(\Rightarrow3x.\left(2-y\right)=18\Rightarrow x.\left(2-y\right)=6\)

Lập bảng tính

10 tháng 2 2016

bài 1 : a,ta có 3/x-1 =4/y-2=5/z-3 =>  x-1/3=y-2/4=z-3/5 

áp dụng .... => x-1+y-2+z-3 / 3+4+5 = x+y+z-1-2-3/3+4+5 = 12/12=1

do x-1/3 = 1 => x-1 = 3 => x= 4 ( tìm y,z tương t

 

 

24 tháng 3 2021

Bài 1: 

a) Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5 áp dụng ... =>x - 1 + y - 2 + z - 3/3 + 4 + 5 = x + y + z - 1 - 2 - 3/3 + 4 + 5 = 12/12 = 1 do x - 1/3 = 1 => x - 1 = 3 => x = 4 ( tìm y, z tương tự )

20 tháng 7 2023

Bài 2:

\(\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)

\(\Rightarrow\dfrac{a+b}{c+a}=\dfrac{a-b}{c-a}=\dfrac{a+b+a-b}{c+a+c-a}=\dfrac{a}{c}\) (T/c dãy tỷ số = nhau)

\(\Rightarrow\dfrac{a+b}{c+a}=\dfrac{a}{c}\Rightarrow c\left(a+b\right)=a\left(c+a\right)\)

\(\Rightarrow ac+bc=ac+a^2\Rightarrow a^2=bc\)

8 tháng 10 2016

\(\frac{x+1}{3}=\frac{y+2}{4}=\frac{z+3}{5}\)

Áp Dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x+1}{3}=\frac{y+2}{4}=\frac{z+3}{5}=\frac{x+y+z+6}{12}=\frac{24}{12}=2\)

=> \(\frac{x+1}{3}=2\Rightarrow x+1=6\Rightarrow x=5\)

=> \(\frac{y+2}{4}=2\Rightarrow y=6\)

=> \(\frac{z+3}{5}=2\Rightarrow z=7\)

8 tháng 10 2016

\(\frac{x+1}{2}=\frac{y+3}{4}=\frac{z+5}{6}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x+1}{2}=\frac{y+3}{4}=\frac{z+5}{6}=\frac{2x+3y+4z}{4+12+24}=\frac{9}{40}\)

=>\(\frac{x+1}{2}=\frac{9}{40}\Rightarrow x=-0,55\)

=> \(\frac{y+3}{4}=\frac{9}{40}\Rightarrow y=-2,1\)

=>\(\frac{z+5}{6}=\frac{9}{40}\Rightarrow z=-3,65\)

25 tháng 8 2018

a) ADTCDTSBN

có: \(\frac{x}{2}=\frac{z}{4}=\frac{x+z}{2+4}=\frac{18}{6}=3.\)

=> x/2 = 3 => x = 6

y/3 = 3 => y = 9

z/4 = 3 => z = 12

KL:...

b,c làm tương tự nha

d) ta có: \(\frac{x}{5}=\frac{y}{-6}=\frac{z}{7}=\frac{2x}{10}\)

ADTCDTSBN

có: \(\frac{2x}{10}=\frac{y}{-6}=\frac{z}{7}=\frac{2x+y-z}{10+\left(-6\right)-7}=\frac{49}{-3}\)

=>...

25 tháng 8 2018

e) ADTCDTSBN

có: \(\frac{x+1}{2}=\frac{y+2}{3}=\frac{z+3}{4}=\frac{x+1+y+2+z+3}{2+3+4}=\frac{\left(x+y+z\right)+\left(1+2+3\right)}{9}\)

\(=\frac{21+6}{9}=\frac{27}{9}=3\)

=>...

g) ta có: \(\frac{x}{4}=\frac{y}{3}=k\Rightarrow\hept{\begin{cases}x=4k\\y=3k\end{cases}}\)

mà xy = 12 => 4k.3k = 12

                          12.k2 = 12

                              k2 = 1

                        => k = 1 hoặc k = -1

=> x = 4.1 = 4

y = 3.1 = 3

x=4.(-1) = -4 

y=3.(-1) = -3

KL:...

h) ta có: \(\frac{x}{5}=\frac{y}{3}\Rightarrow\frac{x^2}{25}=\frac{y^2}{9}\)

ADTCDTSBN

có: \(\frac{x^2}{25}=\frac{y^2}{9}=\frac{x^2-y^2}{25-9}=\frac{16}{16}=1\)

=>...

28 tháng 9 2016

Câu 1:

a)Áp dụng tc dãy tỉ:

\(\frac{x}{3}=\frac{y}{7}=\frac{x+y}{3+7}=\frac{20}{10}=2\)

\(\Rightarrow\begin{cases}\frac{x}{3}=2\Rightarrow x=6\\\frac{y}{7}=2\Rightarrow y=14\end{cases}\)

b)Áp dụng tc dãy tỉ:

\(\frac{x}{5}=\frac{y}{2}=\frac{x-y}{5-2}=\frac{6}{3}=2\)

\(\Rightarrow\begin{cases}\frac{x}{5}=2\Rightarrow x=10\\\frac{y}{2}=2\Rightarrow y=4\end{cases}\)

Câu 2:

a)\(\frac{x}{7}=\frac{18}{14}\Rightarrow14x=18\cdot7\)

\(\Rightarrow14x=126\)

\(\Rightarrow x=9\)

b và c đề có vấn đề

28 tháng 9 2016

Câu 1:

a) Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{3}=\frac{y}{7}=\frac{x+y}{3+7}=\frac{20}{10}=2\)

+) \(\frac{x}{3}=2\Rightarrow x=6\)

+) \(\frac{y}{7}=2\Rightarrow y=14\)

Vậy cặp số \(\left(x,y\right)\) là \(\left(6,14\right)\)

b) Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{5}=\frac{y}{2}=\frac{x-y}{5-2}=\frac{6}{3}=2\)

+) \(\frac{x}{5}=2\Rightarrow x=10\)

+) \(\frac{y}{2}=2\Rightarrow y=4\)

Vậy cặp số \(\left(x,y\right)\) là \(\left(10,4\right)\)

Câu 3:

Giải:

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{x}{2}=\frac{y}{4}=\frac{z}{6}=\frac{x-y+z}{2-4+6}=\frac{8}{4}=2\)

+) \(\frac{x}{2}=2\Rightarrow x=4\)

+) \(\frac{y}{4}=2\Rightarrow y=8\)

+) \(\frac{z}{6}=2\Rightarrow z=12\)

Vậy bộ số \(\left(x,y,z\right)\) là \(\left(4,8,12\right)\)

Câu 4:

Giải: 

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk,c=dk\)

Ta có: 

\(\frac{a+b}{a-b}=\frac{bk+b}{bk-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\) (1)

\(\frac{c+d}{c-d}=\frac{dk+d}{dk-d}=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\) (2)

Từ (1) và (2) suy ra \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)