Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hai gọc so le trong là 2 góc ở vị trí so le trong
2 góc này đc tạo bởi 2 đường thẳng song song và đường thẳng thứ 3 cắt 2 đường thẳng đó
như thế này nè
cái tròn đó là vị trí 2 góc so le trong
a) Ta có: \(\frac{x}{5}=\frac{y}{6}\) => \(\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{z}{11}\) => \(\frac{y}{24}=\frac{z}{33}\)
=> \(\frac{x}{20}=\frac{y}{24}=\frac{z}{33}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{20}=\frac{y}{24}=\frac{z}{33}=\frac{x+y-z}{20+24-33}=\frac{44}{11}=4\)
=> \(\hept{\begin{cases}\frac{x}{20}=4\\\frac{y}{24}=4\\\frac{z}{33}=4\end{cases}}\) => \(\hept{\begin{cases}x=4.20=80\\y=4.24=96\\z=4.33=132\end{cases}}\)
Vậy ...
b) Ta có: 3x = 8y => x/8 = y/3 => x/8 = 2y/6
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{8}=\frac{2y}{6}=\frac{x-2y}{8-6}=\frac{4}{2}=2\)
=> \(\hept{\begin{cases}\frac{x}{8}=2\\\frac{y}{3}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.8=16\\y=2.3=6\end{cases}}\)
Vậy ...
Ta có : \(\hept{\begin{cases}\frac{x}{5}=\frac{y}{6}=>\frac{x}{20}=\frac{y}{24}\\\frac{y}{8}=\frac{z}{11}=>\frac{y}{24}=\frac{z}{33}\end{cases}=>\frac{x}{20}=\frac{y}{24}=\frac{z}{33}}\)
Đến đây áp dụng tính chất dãy tỉ số bằng nhau là ra . Mình chỉ hướng làm thôi chứ ko giải hết đâu nha . Đến đây tự giải ra nha .
b)Ta có : \(3x=8y=>\frac{x}{8}=\frac{y}{3}=\frac{2y}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau tự làm tiếp nha
Hok tốt
giả sử mình có ví dụ này bạn hiểu và làm được bài đó của bạn chứ
f ) x + y = x . y = x : y
Ta có :
x+y=xy⇒x=xy−y=y⋅(x−1)⇒x:y=x−1x+y=xy⇒x=xy−y=y⋅(x−1)⇒x:y=x−1
Mặt khác , x : y = x + y ( gt )
⇒x−1=x+y⇒x−x=1+y⇒1+y=0⇒y=−1⇒x−1=x+y⇒x−x=1+y⇒1+y=0⇒y=−1
+)x=(x−1)⋅y⇒x=(x−1)⋅(−1)⇒x=−x+1⇒2x=1⇒x=12+)x=(x−1)⋅y⇒x=(x−1)⋅(−1)⇒x=−x+1⇒2x=1⇒x=12
Vậy x = 12,y=−1
Không hiểu hỏi mình nha
a, + \(\dfrac{x}{4}\) = \(\dfrac{y}{-5}\) = k ⇒ \(\left\{{}\begin{matrix}x=4k\\y=-5k\end{matrix}\right.\)
Mà -3x + 2y = 55
⇒ -3.4 + 2.-5k = 55
-12k + -10k = 55
(-12 + -10)k = 55
-22k = 55
k = \(\dfrac{55}{22}\) = \(\dfrac{5}{2}\)
+ x = \(\dfrac{5}{2}\).4 = 10
+ y = \(\dfrac{5}{2}\).-5 = \(\dfrac{-25}{2}\)
Vậy x = 10; y = \(\dfrac{-25}{2}\)
a,
x/4=y/-5 va -3x+2y=55
Theo de bai ta co :
x/4=y/-5 = -3x/-12=2y/-10 va -3x+2y=55
Ap dung tinh chat day ti so bang nhau ta co :
-3x/-12=2y/-10=-3x+2y/-12+10=55/-2=-27,5
Suy ra :
-3x/-12=-27,5=>x=-27,5.-12:-3=-100
2y/-10=-27,5=>y=-27,5.-10:2=137,5
b,
x/-3=y/8 va x^2-y^2=-44/5
Theo de bai ta co :
x/-3=y/8=x^2/=-9=y^2/64 va x^2-y^2=-8,8
Ap dung tinh chat day ti so bang nhau ta co :
x^2/-9=y^2/64 = x^2-y^2/-9-24=-8,8/-33=sai de
nho lik e
Ta có: \(\frac{x}{y}=\frac{-7}{4}\Rightarrow\frac{x}{-7}=\frac{y}{4}\)
Suy ra \(\frac{4x}{-28}=\frac{5y}{20}\)
Áp dụng tính chất dãy các tỉ số bằng nhau, ta có:
\(\frac{4x}{-28}=\frac{5y}{20}=\frac{4x-5y}{-28-20}=\frac{-3}{2}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{-3}{2}.\left(-7\right)=\frac{21}{2}\\y=\frac{-3}{2}.4=-6\end{cases}}\)
Vậy \(x=\frac{21}{2}\) và y = -6
đặt \(\frac{x}{-3}=\frac{y}{8}=k\) \(\Rightarrow x=-3k;y=8k\)
\(x^2-y^2=-\frac{44}{5}\)\(\Leftrightarrow\left(-3k\right)^2-\left(8k\right)^2=9k^2-64k^2=-55k^2=\frac{-44}{5}\)
\(\Rightarrow k^2=\frac{4}{25}\Rightarrow k=\pm\frac{2}{5}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{-6}{5};y=\frac{16}{5}\\x=\frac{6}{5};y=\frac{-16}{5}\end{cases}}\)
#)Giải :
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{x}{5}=\frac{y}{2}=\frac{3x-2y}{15-4}=\frac{44}{11}=4\Rightarrow\hept{\begin{cases}\frac{x}{5}=4\\\frac{y}{2}=4\end{cases}\Rightarrow\hept{\begin{cases}x=20\\y=8\end{cases}}}\)
Vậy ...