Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có \(x^2\)+\(4x\)-5 =0 \(\Rightarrow\)\(x^2\)-\(x\)+\(5x-5\)=0 \(\Rightarrow\)\(x\left(x-1\right)+5\left(x-1\right)=0\Rightarrow\left(x+5\right)\left(x-1\right)=0\)
\(\Rightarrow x-1=0\)hoặc \(x+5=0\)
- \(x-1=0\Rightarrow x=1\)
- \(x+5=0\Rightarrow x=-5\)
\(\)vậy \(x\in(1;-5)\)
đúng thì k nha
bài 1:
a) y=f(0)=|1-0|+2=3
y=f(1)=|1-(-1)|+2=4
y=f(-1/2)=|1-(-1/2)|+2=7/2
b) f(x)=3 <=> |1-x|+2=3
|1-x|=3-2
|1-x|=1
=> \(\orbr{\begin{cases}1-x=1\\1-x=-1\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
f(x)=3-x <=> |1-x|+2=3-x
|1-x|=3-x-2
|1-x|=1-x
=> (1-x)-(1-x)=0
2.(1-x)=0
=> 1-x=0
=> x=1
\(6x^2+5y^2=74\Rightarrow5y^2\le74\Rightarrow y^2< 16\Rightarrow\left|y\right|< 4\Rightarrow-4< y< 4\)(1)
e,\(5y^2⋮2\Rightarrow y^2⋮2\Rightarrow y⋮2\)(2)
Từ (1) và (2) kết hợp với y là số nguyên thì \(y\in\left\{-2;0;2\right\}\)
Thay vào đề bài thử loại y = 0 ta được 4 cặp số thỏa mãn là:
\(\left(x;y\right)\in\left\{\left(3;2\right),\left(3;-2\right),\left(-3;2\right),\left(-3;-2\right)\right\}\)
\(\left(x-5\right)^4.|y^2-25|=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-5\right)^4=0\\|y^2-25|=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\y^2-25=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0+5=5\\y^2=0+25=25\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\y=5;-5\end{matrix}\right.\)
Vậy x=5 và y=5;-5
Cảm mơn nha