K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 9 2016

x=7 và y=2,5

29 tháng 9 2016

cho mình cách giải vs bạn ~~~

29 tháng 8 2017

\(\left\{{}\begin{matrix}x^2-4y^2=24\\\left(5-2y\right)\left(x-7\right)=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=7\\4y^2=49-24=25=>\left|y\right|=\dfrac{5}{2}\end{matrix}\right.\)

\(\left\{{}\begin{matrix}y=\dfrac{5}{2}\\x^2-25=24=>x^2=49=>\left|x\right|=7\end{matrix}\right.\)

15 tháng 10 2019

biết làm luôn rồi :)

2 tháng 9 2020

Ta có hệ phương trình : 

\(\hept{\begin{cases}x^2+7=4y^2+4y\left(1\right)\\x^2+3xy+2y^2+x+y=0\left(2\right)\end{cases}}\)

Từ (2) \(\Leftrightarrow x^2+xy+2xy+2y^2+x+y=0\)

\(\Leftrightarrow\left(x+y\right)\left(x+2y+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-y\\x=-2y-1\end{cases}}\)

*) Với \(x=-y\) thì từ (1) suy ra :

\(\left(-y\right)^2+7=4y^2+4y\)

\(\Leftrightarrow3y^2+4y-7=0\)

\(\Leftrightarrow\left(y-1\right)\left(3y+7\right)=0\Leftrightarrow\orbr{\begin{cases}y=1\\y=-\frac{7}{3}\end{cases}}\)

+) Khi \(y=1\Rightarrow x=-1\)

+) Khi \(y=-\frac{7}{3}\Rightarrow x=\frac{7}{3}\)

*) Với \(x=-2y-1\) thì từ (1) suy ra :

\(\left(-2y-1\right)^2+7=4y^2+4y\)

\(\Leftrightarrow4y^2+4y+1+7=4y^2+4y\)

\(\Leftrightarrow0=8\) ( Vô lí )

Vậy \(\left(x,y\right)\in\left\{\left(-1,1\right);\left(\frac{7}{3},-\frac{7}{3}\right)\right\}\)

20 tháng 7 2019

mấy bài này dễ mà bạn

31 tháng 12 2018

trừ cho nhau là xong

1 tháng 2 2019

Nói nghe có vẻ dễ ha Trần Hữu Ngọc Minh