Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 16x < 1284
\(\Rightarrow\)24x < 228
\(\Rightarrow\)4x < 28
\(\Rightarrow\)x < 7
Vì x \(\in\)N nên x = 0; 1; 2; 3; 4; 5; 6
b) x10 = 1x = 1
\(\Rightarrow\)x = 1
c) Để 2003 - 1003:(999 - x) đạt giá trị nhỏ nhất thì 1003:(999 - x) phải lớn nhất
Để 1003:(999 - x) lớn nhất thì 999 - x nhỏ nhất \(\Rightarrow\) 999 - x = 0 \(\Rightarrow\)x= 999
a, \(16^x< 128^4\)
\(\Rightarrow\left(2^4\right)^x< \left(2^7\right)^4\)
\(\Rightarrow2^{4x}< 2^{28}\)
\(\Leftrightarrow4x< 28\)
\(\Leftrightarrow x< 7\)
\(\Rightarrow x=\left\{0\text{ };\text{ }1\text{ };\text{ }2\text{ };\text{ }3\text{ };\text{ }4\text{ };\text{ }5\text{ };\text{ }6\text{ }\right\}\)
b, \(x^{10}=1^x\)
\(\Rightarrow x^{10}=1\)
Vì số mũ khác 0 nên suy ra x = 1
a: \(A=2018-\left|10-x\right|\le2018\)
Dấu '=' xảy ra khi x=10
\(B=-\left(x+2\right)^2+1999\le1999\)
Dấu '=' xảy ra khi x=-2
b: \(A=\left(2x-8\right)^2+3>=3\)
Dấu '=' xảy ra khi x=4
\(B=\left|x^2-25\right|-2017>=-2017\)
Dấu '=' xảy ra khi x=5 hoặc x=-5
Mời bạn đọc lại Báo Toán Tuổi Thơ THCs số gần đây có bài này nhá
Kí hiệu S(n) là tổng các chữ số của n , tìm số nguyên dương n sao cho :S(n)=n^2−2013n+6 5* luôn ạ?
S(n)=n^2−2013n+6 = n(n - 2013) + 6
n ≤ 2012 thì n(n - 2013) ≤ - 2012 → S(n) < 0 loại
n = 2013 → S(n) = 6 thỏa mãn
n > 2013 không có số n nào có tổng các chữ số =n(n - 2013) loại
Vậy n = 2013
Bài 2:
a) \(\left(x-3\right)^3+27=0\)
\(\Leftrightarrow\left(x-3\right)^3=0-27\)
\(\Leftrightarrow\left(x-3\right)^3=-27\)
\(\Leftrightarrow\left(x-3\right)^3=\left(-3\right)^3\)
\(\Leftrightarrow x-3=-3\)
\(\Leftrightarrow x=\left(-3\right)+3\)
\(\Leftrightarrow x=0\)
b) \(-125-\left(x+1\right)^3=0\)
\(\Leftrightarrow\left(x+1\right)^3=-125-0\)
\(\Leftrightarrow\left(x+1\right)^3=-125\)
\(\Leftrightarrow\left(x+1\right)^3=\left(-5\right)^3\)
\(\Leftrightarrow x+1=-5\)
\(\Leftrightarrow x=\left(-5\right)-1\)
\(\Leftrightarrow x=-6\)
c) \(\left(2x-\dfrac{1}{4}\right)^2-\dfrac{1}{16}=0\)
\(\Leftrightarrow\left(2x-\dfrac{1}{4}\right)^2=0+\dfrac{1}{16}\)
\(\Leftrightarrow\left(2x-\dfrac{1}{4}\right)^2=\dfrac{1}{16}\)
\(\Leftrightarrow\left(2x-\dfrac{1}{4}\right)^2=\left(\dfrac{1}{4}\right)^2\)
\(\Leftrightarrow2x-\dfrac{1}{4}=\dfrac{1}{4}\)
\(\Leftrightarrow2x=\dfrac{1}{4}+\dfrac{1}{4}\)
\(\Leftrightarrow2x=\dfrac{1}{2}\)
\(\Leftrightarrow x=\dfrac{1}{2}:2\)
\(\Leftrightarrow x=\dfrac{1}{4}\)
d) \(2^x+2^{x+1}=24\)
\(\Leftrightarrow2^x+2^x.2=24\)
\(\Leftrightarrow2^x\left(1+2\right)=24\)
\(\Leftrightarrow2^x.3=24\)
\(\Leftrightarrow2^x=24:3\)
\(\Leftrightarrow2^x=8\)
\(\Leftrightarrow2^x=2^3\)
\(\Rightarrow x=3\)
e) \(\left|x+\dfrac{1}{5}\right|-\dfrac{1}{2}=1\)
\(\Leftrightarrow\left|x+\dfrac{1}{5}\right|=1+\dfrac{1}{2}\)
\(\Leftrightarrow\left|x+\dfrac{1}{5}\right|=\dfrac{3}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{5}=-\dfrac{3}{2}\\x+\dfrac{1}{5}=\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{17}{10}\\x=\dfrac{13}{10}\end{matrix}\right.\)
g) \(\left|x-3\right|+2x=10\)
\(\Leftrightarrow\left|x-3\right|=10-2x\)
\(\Leftrightarrow\left|x-3\right|=2.5-2x\)
\(\Leftrightarrow\left|x-3\right|=2\left(5-x\right)\)
(không chắc có nên làm tiếp câu g không, thấy đề cứ là lạ, có j sai sai...)
Bài 1:
a) \(2^7+2^9⋮10\)
Ta có: \(2^7+2^9=2^{4.1}.2^3+2^{4.2}.2\)
\(\Leftrightarrow\overline{A6}.2^3+\overline{B6}.2\)
\(\Leftrightarrow\overline{A6}.8+\overline{B6}.2\)
\(\Leftrightarrow\overline{C8}+\overline{D2}\)
\(\Leftrightarrow\overline{E0}\)
Mà \(\overline{E0}⋮10\) \(\Rightarrow2^7+2^9⋮10\)
b) \(8^{24}.25^{10}⋮2^{36}.5^{20}\)
Ta có: \(8^{24}.25^{10}=\left(2^3\right)^{24}.\left(5^2\right)^{10}\)
\(\Leftrightarrow2^{72}.5^{20}\)
Do \(2^{72}⋮2^{36}\) và \(5^{20}⋮5^{20}\) \(\Rightarrow8^{24}.25^{10}⋮2^{36}.5^{20}\)
c) \(3^{10}+3^{12}⋮30\)
Ta có: \(3^{10}+3^{12}=3^{4.2}.3^2+3^{4.3}\)
\(\Leftrightarrow\overline{A1}.3^2+\overline{B1}\)
\(\Leftrightarrow\overline{A1}.9+\overline{B1}\)
\(\Leftrightarrow\overline{C9}+\overline{B1}\)
\(\Leftrightarrow\overline{D0}⋮10\)
(Chứng minh chia hết cho 10 rồi chứng minh chia hết cho 3, mình chưa tìm được cách làm, chờ chút)
a) \(\left(x+1\right)-\frac{x+1}{3}=\frac{5\left(x+1\right)-1}{6}\)
\(\Leftrightarrow6\left(x+1\right)-2\left(x+1\right)=5\left(x+1\right)-1\)
\(\Leftrightarrow6x+6-2x-2=5x+5-1\)
\(\Leftrightarrow6x-2x-5x=5-1-6+2\)
\(\Leftrightarrow-x=0\)
\(\Leftrightarrow x=0\)
b) \(\left(1-x\right)^2+\left(x+2\right)^2=2x\left(x-3\right)-7\)
\(\Leftrightarrow1-2x+x^2+x^2+4x+4=2x^2-6x-7\)
\(\Leftrightarrow2x^2+2x+5=2x^2-6x-7\)
\(\Leftrightarrow2x+6x=-7-5\)
\(\Leftrightarrow8x=-12\)
\(\Leftrightarrow x=-\frac{3}{2}\)
c) \(2+\frac{x-2}{2}-\frac{2x-4}{3}-\frac{5}{6}\left(2-x\right)=0\)
\(\Leftrightarrow2+\frac{x}{2}-1-\frac{2}{3}x+\frac{4}{3}-\frac{5}{3}+\frac{5}{6}x=0\)
\(\Leftrightarrow\frac{x}{2}-\frac{2}{3}x+\frac{5}{6}x=-2+1-\frac{4}{3}+\frac{5}{3}\)
\(\Leftrightarrow\frac{2}{3}x=-\frac{2}{3}\)
\(\Leftrightarrow x=-1\)
vì l2x + 5l \(\ge\) 0
=> A nhỏ nhất khi l2x + 5l nhỏ nhất
=> l2x + 5l = 0 => 2x + 5 = 0 => 2x = 0 - 5 = -5 => x = -5 : 2 = -2,5
vậy A nhỏ nhất bằng 10 tại x = -2,5
A=|2x+5|+10
Do \(\left|2x+5\right|\ge0\Rightarrow\left|2x+5\right|+10\ge10\)
=>Min A=10 <=>|2x+5|=0
<=>2x+5=0
<=>2x=-5
<=>x=-5:2=-2,5
Vậy min A=10 <=>x=-2,5