Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Vì $x,y$ là 2 đại lượng tln nên $xy$ không đổi bằng $-4.9=-36$. Ta có bảng sau:
x | -4 | -3 | 6 | -10 | 2,5 | 7,2 |
y | 9 | 12 | -6 | 3,6 | -14,4 | -5 |
Bạn lấy hàng x nhân với -2 là ra số ở cột tương ứng hàng y nhé!
Bài 1:
a.
Ta có tỉ lệ thức: 4,5 x 14,4 = 6 x 10,8
\(\Rightarrow\frac{4,5}{6}=\frac{10,8}{14,4};\frac{4,5}{10,8}=\frac{6}{14,4};\frac{6}{4,5}=\frac{14,4}{10,8};\frac{10,8}{4,5}=\frac{14,4}{6}\)
b.
Ta có tỉ lệ thức 1: 4 x 1024 = 16 x 256
\(\Rightarrow\frac{4}{16}=\frac{256}{1024};\frac{4}{256}=\frac{16}{1024};\frac{16}{4}=\frac{1024}{256};\frac{256}{4}=\frac{1024}{16}\)
Ta có tỉ lệ thức 2: 16 x 64 = 4 x 256
\(\Rightarrow\frac{16}{4}=\frac{256}{64};\frac{16}{256}=\frac{4}{64};\frac{4}{16}=\frac{64}{256};\frac{256}{16}=\frac{64}{4}\)
Bài 2:
Áp dụng t/c DTSBN. ta có:
\(\frac{x}{11}=\frac{y}{7}=\frac{x+y}{11+7}=\frac{-54}{18}=-3\)
\(\Rightarrow x=11.\left(-3\right)=-33\)
\(\Rightarrow y=7.\left(-3\right)=-21\)
a) Tỉ lệ của y đối với x là : \(\dfrac{{{y_1}}}{{{x_1}}} = 5\)
\( \Rightarrow \) Hệ số tỉ lệ của y đối với x là : \(5\)
b) Dựa vào hệ số tỉ lệ của y đối với x vừa tính được
Xét \({y_2} =5. {x_2}=5.2=10\)
Xét \({y_2} =5. {x_3}=5.6= 30\)
Xét \({y_4} = 5.{x_4}=5.100= 500\)
c) Ta có: \(\dfrac{{{y_1}}}{{{x_1}}},\dfrac{{{y_2}}}{{{x_2}}},\dfrac{{{y_3}}}{{{x_3}}},\dfrac{{{y_4}}}{{{x_4}}}\) lần lượt bằng : \(\dfrac{5}{1},\dfrac{{10}}{2},\dfrac{{30}}{6},\dfrac{{500}}{{100}}\)
Các tỉ số giữa y và x tương ứng đều bằng nhau (cùng = 5)
Câu 1:
a)Áp dụng tc dãy tỉ:
\(\frac{x}{3}=\frac{y}{7}=\frac{x+y}{3+7}=\frac{20}{10}=2\)
\(\Rightarrow\begin{cases}\frac{x}{3}=2\Rightarrow x=6\\\frac{y}{7}=2\Rightarrow y=14\end{cases}\)
b)Áp dụng tc dãy tỉ:
\(\frac{x}{5}=\frac{y}{2}=\frac{x-y}{5-2}=\frac{6}{3}=2\)
\(\Rightarrow\begin{cases}\frac{x}{5}=2\Rightarrow x=10\\\frac{y}{2}=2\Rightarrow y=4\end{cases}\)
Câu 2:
a)\(\frac{x}{7}=\frac{18}{14}\Rightarrow14x=18\cdot7\)
\(\Rightarrow14x=126\)
\(\Rightarrow x=9\)
b và c đề có vấn đề
Câu 1:
a) Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{7}=\frac{x+y}{3+7}=\frac{20}{10}=2\)
+) \(\frac{x}{3}=2\Rightarrow x=6\)
+) \(\frac{y}{7}=2\Rightarrow y=14\)
Vậy cặp số \(\left(x,y\right)\) là \(\left(6,14\right)\)
b) Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{5}=\frac{y}{2}=\frac{x-y}{5-2}=\frac{6}{3}=2\)
+) \(\frac{x}{5}=2\Rightarrow x=10\)
+) \(\frac{y}{2}=2\Rightarrow y=4\)
Vậy cặp số \(\left(x,y\right)\) là \(\left(10,4\right)\)
Câu 3:
Giải:
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{2}=\frac{y}{4}=\frac{z}{6}=\frac{x-y+z}{2-4+6}=\frac{8}{4}=2\)
+) \(\frac{x}{2}=2\Rightarrow x=4\)
+) \(\frac{y}{4}=2\Rightarrow y=8\)
+) \(\frac{z}{6}=2\Rightarrow z=12\)
Vậy bộ số \(\left(x,y,z\right)\) là \(\left(4,8,12\right)\)
Câu 4:
Giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=bk,c=dk\)
Ta có:
\(\frac{a+b}{a-b}=\frac{bk+b}{bk-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\) (1)
\(\frac{c+d}{c-d}=\frac{dk+d}{dk-d}=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\) (2)
Từ (1) và (2) suy ra \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
Đề thiếu rồi bạn ơi