Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* Kẻ BH vuông góc CD.
Xét tứ giác ABHD có:
=> Tứ giác ABHD là hình chữ nhật
=> AB = DH= 10 ( hình chữ nhật có các cạnh đối bằng nhau)
+ Suy ra: HC =DC- DH =15- 10= 5
+ Áp dụng định lí py- ta- go vào tam giác vuông BHC có:
BC2 = BH2 + HC2 ⇔ 132 = BH2 + 52
⇔ BH2 = 132 – 52 = 144
⇔ BH = 12
+ Do ABHD là hình chữ nhật nên AD= BH = 12
Vậy x= 12
\(3xy+x+15y-44=0\)
\(\Leftrightarrow\) \(3xy+x+15y=44\)
\(\Leftrightarrow\) \(3xy+x+15y+5=49\)
\(\Leftrightarrow\) \(x\left(3y+1\right)+5\left(3y+1\right)=49\)
\(\Leftrightarrow\) \(\left(x+5\right)\left(3y+1\right)=49\)
Vì \(x,y\) nguyên dương nên \(x+5;\) \(3y+1\) nguyên dương và lớn hơn \(1\). Do đó,
\(^{x+5=7}_{3y+1=7}\) \(\Leftrightarrow\) \(^{x=2}_{y=2}\)
Vậy, phương trình có nghiệm nguyên là \(x=y=2\) (thỏa mãn \(x,y\in Z\) )
3xy+x+15y-44=0
=> (3xy+15y)+(x+5)-49=0
=> 3y.(x+5)+(x+5)=49
=> (x+5)(3y+1)=49
Do x,y là số nguyên dương nên x+5 và 3y+1 là ước dương của 49
Ta có bảng sau:
x+5 | 1 | 7 | 49 |
x | -4 | 2 | 44 |
3y+1 | 49 | 7 | 1 |
y | 16 | 2 | 0 |
Mà x, y là số nguyên dương nên (x;y) cần tìm là (2;2)
Trong tam giác \(OAB\) có \(CD//AB\).
Theo hệ quả của định lí Thales ta có:
\(\frac{{OD}}{{OB}} = \frac{{CD}}{{AB}}\) mà \(OB = OD + DB = 3,6 + 1,8 = 5,4\)
Suy ra, \(\frac{{3,6}}{{5,4}} = \frac{x}{{7,8}} \Rightarrow x = \frac{{3,6.7,8}}{{5,4}} = 5,2\).
Vậy \(x = 5,2\).
Vì MN // HK, áp dụng định lý Ta-lét ta có:
S M S H = S N S K ⇒ S M S M + M H = S N S K ⇒ x x + 3 = 7 12
=> 12x = 7x + 21 => x = 21 5
Vậy x = 21 5
Đáp án: A
Vì MN // HK, áp dụng định lý Ta-lét ta có:
S M S H = S N S K ⇒ S M S M + M H = S N S K ⇒ 4 x + 4 = 6 3 , 5 x
Vậy x = 3
Đáp án: A
* Ba đường thẳng MP, NQ và IK cùng vuông góc với PQ
=> MP// IK// NQ
=> Tứ giác MPQN là hình thang
Do đường thẳng IK đi qua trung điểm cạnh bên MN và song song với hai đáy nên K là trung điểm PQ.
Nên PK =KQ = 5cm
Vậy x = 5dm