Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(x-\frac{5}{6}=\frac{-2}{3}\)
\(\Leftrightarrow x=\frac{1}{6}\)
b, \(\frac{-7}{5}+x=\frac{-4}{3}\)
\(\Leftrightarrow x=\frac{1}{15}\)
c, \(x-\frac{2}{5}=-\frac{1}{6}-\frac{3}{-4}\)
\(\Leftrightarrow x-\frac{2}{5}=-\frac{1}{6}+\frac{3}{4}\)
\(\Leftrightarrow x-\frac{2}{5}=\frac{7}{12}\Leftrightarrow x=\frac{59}{60}\)
a)\(\left(\frac{2}{3}+\frac{2}{5}\right)x=\frac{1}{5}-2\frac{1}{2}\)
\(\frac{16}{15}x=\frac{1}{5}-1\)
\(\frac{16}{15}x=-\frac{4}{5}\)
\(x=-\frac{4}{5}\div\frac{16}{15}\)
\(x=-\frac{3}{4}\)
b)\(\frac{4}{7}x-\frac{2}{3}=\frac{1}{5}\)
\(\frac{4}{7}x=\frac{1}{5}+\frac{2}{3}\)
\(\frac{4}{7}x=\frac{13}{15}\)
\(x=\frac{13}{15}\div\frac{4}{7}\)
\(x=\frac{91}{60}\)
\(\left(\frac{2}{3}+\frac{1}{5}\right)\)CHỨ HK PHẢI LÀ \(\left(\frac{2}{3}+\frac{2}{5}\right)\)ĐÂU Ạ
CHO MK XIN LỖI VÌ GHI SAI ĐẦU BÀI
Ta có : \(\frac{x}{4}=\frac{10}{x+3}\)
\(\Rightarrow x\left(x+3\right)=4.10\)
\(\Rightarrow x\left(x+3\right)=40\)
\(\Rightarrow x\left(x+3\right)=5.8=\left(-8\right)\left(-5\right)\)
Vậy x = 5;-8
\(T=x^2+y^2+\frac{1}{x}+\frac{1}{x+y}\)
\(=\left(x-2\right)^2+\left(y-1\right)^2+\left(\frac{x}{4}+\frac{1}{x}\right)+\left(\frac{x+y}{9}+\frac{1}{x+y}\right)+\frac{17}{9}\left(x+y\right)+\frac{7x}{9}-5\)
\(\ge0+0+2\sqrt{\frac{x}{4}\cdot\frac{1}{x}}+2\sqrt{\frac{x+y}{9}\cdot\frac{1}{x+y}}+\frac{17\cdot3}{9}+\frac{7\cdot2}{9}-5\)
\(=\frac{35}{9}\)
Đẳng thức xảy ra tại x=2;y=1
Đặt x = 2t
đưa bài toán về dạng:
\(T=4t^2+y^2+\frac{1}{2t}+\frac{1}{2t+y}\ge\left(t^2+t^2+y^2\right)+\frac{1}{2t+y}+\left(2t^2+\frac{1}{2t}\right)\)
\(\ge\frac{\left(2t+y\right)^2}{3}+\frac{1}{2t+y}+\left(2t^2+\frac{1}{2t}\right)\)
\(=\left(\frac{\left(2t+y\right)^2}{3}+\frac{9}{2t+y}+\frac{9}{2t+y}\right)+\left(2t^2+\frac{4}{2t}+\frac{4}{2t}\right)-\frac{17}{2t+y}-\frac{7}{2t}\)
\(\ge3.3+3.2-\frac{17}{3}-\frac{7}{2}=\frac{35}{6}\)
Dấu "=" xảy ra <=> y = t = 1 <=> y = 1 ; x = 2
Áp dụng công thức: \(\frac{1}{a-1}-\frac{1}{a}=\frac{1}{\left(a-1\right)a}>\frac{1}{a.a}=\frac{1}{a^2}\)
Ta có: \(\frac{1}{2^2}< \frac{8}{9}-\frac{1}{2}\)
\(\frac{1}{3^2}< \frac{1}{2}-\frac{1}{3}\)
\(\frac{1}{4^2}< \frac{1}{3}-\frac{1}{4}\)
-----------------------------------------
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}< \frac{8}{9}-\frac{1}{9}=\frac{7}{9}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}< \frac{8}{9}\)(1)
Đảo ngược công thức trên lại,ta lại có: \(\frac{1}{a+1}+\frac{1}{a}=\frac{1}{\left(a+1\right)a}< \frac{1}{a.a}=\frac{1}{a^2}\)
SAu đó bạn làm tương tự như trên sẽ được . Giờ mình bận rồi=)))
Đây là toán nhé =))
Ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{9^2}< \frac{1}{8.9}\)
\(\Rightarrow S< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{8.9}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}=1-\frac{1}{9}=\frac{8}{9}\left(1\right)\)
Lại có: \(\frac{1}{2^2}>\frac{1}{2.3};\frac{1}{3^2}>\frac{1}{3.4};...;\frac{1}{9^2}>\frac{1}{9.10}\)
\(\Rightarrow S>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\left(2\right)\)
Từ (1) và (2) => \(\frac{2}{5}< S< \frac{8}{9}\)
\(5x-9=2x+15\)
\(\Leftrightarrow5x-2x=15+9\)
\(\Leftrightarrow3x=24\)
\(\Leftrightarrow x=8\)
\(A=\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{50^2}\)
\(\Rightarrow A>\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+...+\frac{1}{50\cdot51}\)
\(\Rightarrow A>\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{50}-\frac{1}{51}\)
\(\Rightarrow A>\frac{1}{3}-\frac{1}{51}=\frac{17}{51}-\frac{1}{51}=\frac{16}{51}\)
Mà \(\frac{16}{51}>\frac{1}{4}\Rightarrow A>\frac{16}{51}>\frac{1}{4}\Rightarrow A>\frac{1}{4}\)
a/ \(\frac{x-1}{9}=\frac{8}{3}\)
\(\Leftrightarrow3\left(x-1\right)=72\)
\(\Leftrightarrow x-1=24\)
\(\Leftrightarrow x=25\)
Vậy ..
b/ \(\frac{-x}{4}=\frac{-9}{x}\)
\(\Leftrightarrow x^2=36\)
\(\Leftrightarrow x^2=6^2=\left(-6\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}x=6\\x=-6\end{cases}}\)
Vậy ..
c/ \(\frac{x}{4}=\frac{18}{x+1}\)
\(\Leftrightarrow x\left(x+1\right)=72\)
\(\Leftrightarrow x\left(x+1\right)=8.9\)
\(\Leftrightarrow x=8\)
Vậy ..