Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x - 2 ∈ Ư(10) = {-10; -5; - 2; -1; 1; 2; 5; 10). Từ đó tìm được x ∈ {-8; -3; 0; l; 3; 5; 7; 12}.
a) x Î Ư(6) = {-6; -3; -2; -l; l; 2; 3; 6}.
b) x + l Î Ư (8) = {- 8; -4; -2; -1; 1; 2; 4; 8}. Từ đó tìm được
x Î{-9; -5; -3; -2; 0; 1; 3; 7}.
c) x - 2 Î Ư(10) = {-10; -5; - 2; -1; 1; 2; 5; 10). Từ đó tìm được
x Î {-8; -3; 0; l; 3; 5; 7; 12}.
2x+xy+y = 10
=> 2x+xy + y +2 = 12
=> 2(x+1) + y(x+1)= 12
=> (x+1)(2+y) = 12
=> (x+1); (2+y) \(\inƯ\left(12\right)=\left\{\pm1;\pm12;\pm6;\pm3;\pm4;\pm2\right\}\)
(sau đó lập bảng tự làm tiếp :v )
Chúc em học tốt !
\(2x+xy+y=10\)
\(\Rightarrow x\left(2+y\right)+\left(2+y\right)=2+10\)
\(\Rightarrow\left(x+1\right)+\left(2+y\right)=12\)
\(\Rightarrow\left(x+1\right);\left(2+y\right)\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
\(TH1:\hept{\begin{cases}x+1=1\\2+y=12\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=10\end{cases}}}\)\(TH2:\hept{\begin{cases}x+1=-1\\2+y=-12\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=-14\end{cases}}}\)
\(TH3:\hept{\begin{cases}x+1=2\\2+y=6\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=4\end{cases}}}\) \(TH4:\hept{\begin{cases}x+1=-2\\2+y=-6\end{cases}\Leftrightarrow\hept{\begin{cases}x=-3\\y=-8\end{cases}}}\)
\(TH5:\hept{\begin{cases}x+1=3\\2+y=4\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=2\end{cases}}}\)\(TH6:\hept{\begin{cases}x+1=-3\\2+y=-4\end{cases}\Leftrightarrow\hept{\begin{cases}x=-4\\y=-6\end{cases}}}\)
\(TH7:\hept{\begin{cases}x+1=12\\2+y=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=11\\y=-1\end{cases}}}\) \(TH8:\hept{\begin{cases}x+1=-12\\2+y=-1\end{cases}\Leftrightarrow\hept{\begin{cases}x=-13\\y=-3\end{cases}}}\)
\(TH9:\hept{\begin{cases}x+1=6\\2+y=2\end{cases}\Leftrightarrow\hept{\begin{cases}x=5\\y=0\end{cases}}}\) \(TH10:\hept{\begin{cases}x+1=-6\\2+y=-2\end{cases}\Leftrightarrow\hept{\begin{cases}x=-7\\y=-4\end{cases}}}\)
\(TH11:\hept{\begin{cases}x+1=4\\2+y=3\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=1\end{cases}}}\) \(TH12:\hept{\begin{cases}x+1=-4\\2+y=-3\end{cases}\Leftrightarrow\hept{\begin{cases}x=-5\\y=-5\end{cases}}}\)
Vậy............................
(x+1)+(x+3)+...+(x+99)=0
Tổng các số hạng là: (99+1):2=50 (số hạng)
=> (x+1)+(x+3)+...+(x+99)=0 <=> 50.x+(1+3+5+...+99) = 0
<=> 50.x+=0 <=> 50.x+2500=0 => x=-2500/50=-50
Bài 1 ( x - 7 ) ( x + 3 ) < 0
\(\Rightarrow\hept{\begin{cases}x-7< 0\\x+3>0\end{cases}}\) hoặc \(\hept{\begin{cases}x-7>0\\x+3< 0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x< 7\\x>-3\end{cases}}\) hoăc \(\hept{\begin{cases}x>7\\x< -3\end{cases}}\) ( vô lí )
\(\Rightarrow\) - 3 < x < 7
Mà \(x\in Z\)
\(\Rightarrow x\in\left\{-2;-1;0;1;2;3;4;5;6\right\}\)
Vậy \(x\in\left\{-2;-1;0;1;2;3;4;5;6\right\}\)
Bài 2 n - 1 là bội của n + 5 và n + 5 là bội của n - 1
Là 2 bài riêng biệt ak ????
Bài 3 : Tìm a,b. thuộc Z biết ab = 24 ; a + b = -10 ~~~~~ Lát nghĩ
Bài 4 : Tìm các cặp số nguyên có tổng bằng tích ~~~~~ tối lm
bài 2: (x-3).(y+2) = -5
Vì x, y \(\in\)Z => x-3 \(\in\)Ư(-5) = {5;-5;1;-1}
Ta có bảng:
x-3 | 5 | -5 | -1 | 1 |
y+2 | 1 | -1 | -5 | 5 |
x | 8 | -2 | 2 | 4 |
y | -1 | -3 | -7 | 3 |
bài 3: a(a+2)<0
TH1 : \(\orbr{\begin{cases}a< 0\\a+2>0\end{cases}}\)=>\(\orbr{\begin{cases}a< 0\\a>-2\end{cases}}\)=> -2<a<0 ( TM)
TH2: \(\orbr{\begin{cases}a>0\\a+2< 0\end{cases}}\Rightarrow\orbr{\begin{cases}a>0\\a< -2\end{cases}}\Rightarrow loại\)
Vậy -2<a<0
Bài 5: \(\left(x^2-1\right)\left(x^2-4\right)< 0\)
TH 1 : \(\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>1\\x< 2\end{cases}}\)\(\Rightarrow\)1 < a < 2
TH 2: \(\hept{\begin{cases}x^2-1< 0\\x^2-4>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2< 1\\x^2>4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< 1\\x>2\end{cases}}\)\(\Rightarrow\)loại
Vậy 1<a<2