K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2016

2x+3 chia hết cho 3x+1

=>3(2x+3) chia hết cho 3x+1

=> 6x+9 chia hết cho 3x+1

=>2(3x+1)+7 chia hết cho 3x+1 

=>7 chia hết cho 3x+1

=> 3x+1 thuộc Ư(7)=(1;7;-1;-7) 

=> x thuộc 0;2

18 tháng 8 2021

a. ĐKXĐ : \(x\ne\frac{1}{2};\frac{5}{2};4;-\frac{3}{2};\frac{1\pm\sqrt{43}}{2}\)

 \(A=\left(\frac{2x-3}{4x^2-12x+5}+\frac{3x-8}{13x-2x^2-20}-\frac{3}{2x-1}\right):\frac{21+2x-2x^2}{4x^2+4x-3}+\)

\(=\left(\frac{2x-3}{\left(2x-1\right)\left(2x-5\right)}-\frac{3x-8}{\left(2x-5\right)\left(x-4\right)}-\frac{3}{2x-1}\right).\frac{\left(2x-1\right)\left(2x+3\right)}{21+2x-2x^2}+1\)

\(=\frac{\left(2x-3\right)\left(x-4\right)-\left(3x-8\right)\left(2x-1\right)-3\left(2x-5\right)\left(x-4\right)}{\left(2x-1\right)\left(2x-5\right)\left(x-4\right)}.\frac{\left(2x-1\right)\left(2x+3\right)}{21+2x-2x^2}+1\)

\(=\frac{-10x^2+47x-56}{\left(2x-5\right)\left(x-4\right)}.\frac{2x+3}{-2x^2+2x+21}+1\) số to wa

26 tháng 10 2016

Ta có:

\(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}=6\ge\frac{9}{2\left(x+y+z\right)}\)\(\Rightarrow x+y+z\ge\frac{3}{4}\)

Lại có: \(\frac{1}{2x+3y+3z}=\frac{\left(\frac{3}{4}+\frac{1}{4}\right)^2}{2\left(x+y+z\right)+y+z}\le\frac{9}{32\left(x+y+z\right)}+\frac{1}{16\left(y+z\right)}\)

Do đó:

\(\frac{1}{2x+3y+3z}+\frac{1}{2y+3x+3z}+\frac{1}{2z+3x+3y}\)

\(\le\frac{9}{32\left(x+y+z\right)}\cdot3+\frac{1}{16}\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\)

\(\le\frac{9}{32\cdot\frac{3}{4}}+\frac{1}{16}\cdot6=\frac{3}{2}\)(Đpcm)

1 tháng 2 2018

Tại sao \(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}=6\ge\frac{9}{2\left(x+y+z\right)}\)

6 tháng 7 2016

điều kiện \(x\ge0\)và x khác 1/4

Q= \(\frac{3\sqrt{x}+2}{2\sqrt{x}-1}+\frac{\sqrt{x}-1}{\sqrt{x}+4}-\frac{x-6\sqrt{x}+5}{2x+7\sqrt{x}-4}=\frac{3x+14\sqrt{x}+8+2x-3\sqrt{x}+1-x+6\sqrt{x}-5}{2x+7\sqrt{x}-4}\)

=\(\frac{4x+17\sqrt{x}+4}{2x+7\sqrt{x}-4}\)

đề Q>1/2 thì \(\frac{4x+17\sqrt{x}+4}{2x+7\sqrt{x}-4}>\frac{1}{2}\)

<=> \(8x+34\sqrt{x}+8>2x+7\sqrt{x}-4\)<=> \(6x+27\sqrt{x}+12>0\) với mọi x>=0

vậy Q>1/2 khi x>=0 và x khác 1/4

6 tháng 7 2016

cảm ơn nhiều

đè hinh như là 6\(\sqrt{x}\) nhi bạn

30 tháng 4 2020

\(ĐKXĐ:x,y,z\ge1\left(x,y,z\inℤ\right)\)

Ta có: \(\left(x+2y\right)^2=\left(\frac{2x+y}{2}+\frac{3y}{2}\right)^2\ge4.\frac{2x+y}{2}.\frac{3y}{2}=3y\left(2x+y\right)\)

\(\Rightarrow\frac{2x+y}{x+2y}\le\frac{x+2y}{3y}\Rightarrow\frac{2x+y}{x\left(x+2y\right)}\le\frac{1}{3}\left(\frac{2}{x}+\frac{1}{y}\right)\)

Tương tự: \(\frac{2y+z}{y\left(y+2x\right)}\le\frac{1}{3}\left(\frac{2}{y}+\frac{1}{z}\right)\);\(\frac{2z+x}{z\left(z+2x\right)}\le\frac{1}{3}\left(\frac{2}{z}+\frac{1}{x}\right)\)

\(\Rightarrow A\le\frac{1}{3}.3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)(*)

Ta có: \(\sqrt{2x-1}=\sqrt{\left(2x-1\right).1}\le\frac{2x-1+1}{2}=x\)(BĐT Cô - si)

\(\Rightarrow\frac{1}{x}\le\frac{1}{\sqrt{2x-1}}\)

Tương tự: \(\frac{1}{y}\le\frac{1}{\sqrt{2y-1}}\);\(\frac{1}{z}\le\frac{1}{\sqrt{2z-1}}\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le\frac{1}{\sqrt{2x-1}}+\frac{1}{\sqrt{2y-1}}+\frac{1}{\sqrt{2z-1}}=3\)(**)

Từ (*) và (**) suy ra \(A=\frac{2x+y}{x\left(x+2y\right)}+\frac{2y+z}{y\left(y+2z\right)}+\frac{2z+x}{z\left(z+2x\right)}\le3\)

Đẳng thức xảy ra khi x = y = z = 1

1 tháng 5 2020

Từ đẳng thức đã cho suy ra \(x>\frac{1}{2};y>\frac{1}{2};z>\frac{1}{2}\)

Áp dụng\(\left(a+b\right)^2\ge4ab\)ta có \(\left(x+2y\right)^2=\left(\frac{2x+y}{2}+\frac{3y}{2}\right)^2\ge4\cdot\frac{2x+y}{2}\cdot\frac{3y}{2}\)

\(\Rightarrow\left(x+2y\right)^2\ge3y\left(2x+y\right)\)(Dấu "=" xảy ra <=> x=y)

=> \(\frac{2x+y}{x+2y}\le\frac{x+2y}{3y}\Rightarrow\frac{2x+y}{x\left(x+2y\right)}\le\frac{1}{3}\left(\frac{2}{x}+\frac{1}{y}\right)\)

Tương tự \(\hept{\begin{cases}\frac{2y+z}{y\left(y+2z\right)}\le\frac{1}{3}\left(\frac{2}{y}+\frac{1}{z}\right)\\\frac{2z+x}{z\left(z+2x\right)}\le\frac{1}{3}\left(\frac{2}{z}+\frac{1}{x}\right)\end{cases}}\)

=> \(A\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)(Dấu "=" xảy ra <=> x=y=z)

Ta có \(\sqrt{\left(2x-1\right)\cdot1}\le\frac{\left(2x-1\right)+1}{2}\Rightarrow\sqrt{2x-1}\le x\Rightarrow\frac{1}{x}\le\frac{1}{\sqrt{2x-1}}\)

Tương tự \(\hept{\begin{cases}\frac{1}{y}\le\frac{1}{\sqrt{2y-1}}\\\frac{1}{z}\le\frac{1}{\sqrt{2z-1}}\end{cases}}\)

Do đó \(A\le\frac{1}{\sqrt{2x-1}}+\frac{1}{\sqrt{2y-1}}+\frac{1}{\sqrt{2z-1}}=3\)(dấu "=" xảy ra <=> x=y=z=1)

Vậy MaxA=3 đạt được khi x=y=z=1

23 tháng 10 2016

a) \(B=\frac{\sqrt{x}-3}{x+\sqrt{x}+1}\left(ĐK:x\ge0\right)\)

\(=\frac{\sqrt{81}-3}{81+\sqrt{81}+1}=\frac{9-3}{81+9+1}=\frac{6}{91}\)

b) \(A=\frac{2x+1}{\sqrt{x^3}-1}-\frac{1}{\sqrt{x}-1}\left(ĐK:x\ge0;x\ne1\right)\)

\(=\frac{2x+1-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\frac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\frac{\sqrt{x}}{x+\sqrt{x}+1}\)

c) \(P=\frac{A}{B}\)

\(=\frac{\sqrt{x}}{x+\sqrt{x}+1}:\frac{\sqrt{x}-3}{x+\sqrt{x}+1}\left(ĐK:x\ge0;x\ne9\right)\)

\(=\frac{\sqrt{x}}{\sqrt{x}-3}\)

\(=\frac{\left(\sqrt{x}-3\right)+3}{\sqrt{x}-3}=1+\frac{3}{\sqrt{x}-3}\)

Vậy để P nguyên thì: \(\sqrt{x}-3\inƯ\left(3\right)\)

\(\Leftrightarrow\sqrt{x}-3\in\left\{-1;1;-3;3\right\}\)

+) \(\sqrt{x}-3=-1\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\left(tm\right)\)

+) \(\sqrt{x}-3=1\Leftrightarrow\sqrt{x}=4\Leftrightarrow x=16\left(tm\right)\)

+) \(\sqrt{x}-3=-3\Leftrightarrow\sqrt{x}=0\Leftrightarrow x=0\left(tm\right)\)

+) \(\sqrt{x}-3=3\Leftrightarrow\sqrt{x}=6\Leftrightarrow x=36\left(tm\right)\)

Vậy...........

5 tháng 9 2016

khó !!!

5 tháng 9 2016

Cứ quy đồng là ra à. Làm biếng trình bày quá. Nên cho bạn đáp số thôi nhé

a/ \(\frac{\left(\sqrt{3x}-1\right)^2}{\sqrt{3x}-2}\)

b/ x = 3 và A = 4

31 tháng 7 2016

a. \(P=\left(\frac{x^2+2x}{x^3+2x^2+5x+10}+\frac{4}{x^2+5}\right)\)\(.\frac{x^2+5}{x+1}\)

   \(P=\left(\frac{x\left(x+2\right)}{\left(x+2\right)\left(x^2+5\right)}+\frac{4}{x^2+5}\right)\)\(.\frac{x^2+5}{x+1}\)

  \(P=\left(\frac{x}{x^2+5}+\frac{4}{x^2+5}\right)\)\(.\frac{x^2+5}{x+1}\)

\(P=\frac{x+4}{x^2+5}.\frac{x^2+5}{x+1}\)\(=\frac{x+4}{x+1}\)

phần b em tự giải nhé chị chỉ giải đc đến đây  thôi

24 tháng 12 2018

 a)  P = (\(\frac{x\cdot\left(x+2\right)}{\left(x^2+5\right)\cdot\left(x+2\right)}+\frac{4}{x^2+5}\))*\(\frac{x^2+5}{x+1}\)=\(\frac{x+4}{x^2+5}\cdot\frac{x^2+5}{x+1}\)=\(\frac{x+4}{x+1}\) (ĐKXĐ: x\(x=\left\{-2;-1\right\}\)

b) TA CÓ : P= \(\frac{x+4}{x+1}=1+\frac{3}{x+1}\forall x\ne\left\{-2;-1\right\}\) . VẬY P \(\inℤ\) KHI \(\frac{3}{X+1}\) \(ℤ\in\) \(\Rightarrow x+1\)LÀ ƯỚC CỦA 3 \(\Rightarrow x=+1=\left\{-3;-1;1;3\right\}\Rightarrow x=\left\{-4;0;2\right\}\)

* x=-2 thì P=-4 (NHÂN),x=-1 thì P KO  XÁC ĐỊNH