K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2020

\(B=\frac{15-x}{2-x}=\frac{2-x+13}{2-x}=1+\frac{13}{2-x}\) ( * )

Để B đạt GTLN thì \(\frac{13}{2-x}_{max}\)\(\Rightarrow2-x_{min}\)

Mà 13 > 0 => 2 - x nguyên dương khác 0

=> 2 - x = 1

=> x = 1

Thay x = 1 vào ( * ) ta có : \(B_{max}=1+\frac{13}{2-1}=1+13=14\)

Vậy maxB = 14 <=> x = 1

18 tháng 3 2016

\(x=16\)

18 tháng 3 2016

                                                đúng đấy

5 tháng 12 2015

a) A =1/2  => 2( 15 -2x ) =6- x

               => 4x -x = 30 -6 => 3x =24  => x =8

b) \(A=\frac{2x-15}{x-6}=2-\frac{3}{x-6}\)

 A thuộc Z => x -6 thuộc Ư(3) ={ -3;-1;1;3}

 Max A = 2 +3  =5  khi x - 6 = -1 => x =5

24 tháng 3 2020

A=\(\frac{\frac{1}{6}-\frac{1}{39}+\frac{1}{51}}{\frac{1}{8}-\frac{1}{52}+\frac{1}{68}}\)

25 tháng 5 2018

a) Ta có : 

\(A=\frac{3.\left(x-1\right)^2+12}{\left(x-1\right)^2+2}=\frac{3.\left(x-1\right)^2+3.2+6}{\left(x-1\right)^2+2}=\frac{3.\left[\left(x-1\right)^2+2\right]+6}{\left(x-1\right)^2+2}=3+\frac{6}{\left(x-1\right)^2+2}\)

Để A có giá trị nguyên \(\Leftrightarrow\)\(3+\frac{6}{\left(x-1\right)^2+2}\)\(\in\)\(\Leftrightarrow\)\(\frac{6}{\left(x-1\right)^2+2}\)\(\in\)\(\Leftrightarrow\)( x - 1 )2 + 2 \(\in\)Ư ( 6 )

\(\Rightarrow\)( x - 1 )2 + 2 \(\in\){ 1 ; -1 ; 2 ; -2 ; 3 ; -3 ; 6 ; -6 }

Lập bảng ta có :

(x-1)2+21-12-23-36-6
xloạiloại0loại\(\orbr{\begin{cases}2\\0\end{cases}}\)loại\(\orbr{\begin{cases}3\\-1\end{cases}}\)loại

Vậy x = { 0 ; 2 ; 3 ; -1 }

b) để A có giá trị lớn nhất \(\Leftrightarrow\)\(3+\frac{6}{\left(x-1\right)^2+2}\)có GTLN \(\Leftrightarrow\)\(\frac{6}{\left(x-1\right)^2+2}\)có GTLN \(\Leftrightarrow\)( x - 1 )2 +2 có GTNN

Mà ( x - 1 )2 \(\ge\)\(\Rightarrow\)( x - 1 )2 + 2 \(\ge\)\(\Rightarrow\)GTNN của ( x - 1 )2 + 2 là 2 \(\Leftrightarrow\)x = 1

Vậy A có GTLN là : \(\frac{3.\left(1-1\right)^2+12}{\left(1-1\right)^2+2}=\frac{12}{2}=6\)\(\Leftrightarrow\)x = 1