Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P nguyên
=>1 chia hết cho căn3x -2
=>căn(3x)-2=1 hoặc căn(3x)-2=-1
=>căn3x=3 hoặc căn3x=1
=>3x=1 hoặc 3x=9
=>x=3 hoặc x=1/3(loại)
a) đk: \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)
Ta có:
\(P=\left(\frac{3x-\sqrt{9x}-3}{x+\sqrt{x}-2}+\frac{1}{\sqrt{x}-1}+\frac{1}{\sqrt{x}+2}\right)\div\frac{1}{x-1}\)
\(P=\frac{3x-3\sqrt{x}-3+\sqrt{x}+2+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\cdot\left(x-1\right)\)
\(P=\frac{3x-\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\cdot\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}+1\right)\)
\(P=\frac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+2\right)\left(\sqrt{x}+1\right)}{\sqrt{x}+2}\)
\(P=\frac{\left(3\sqrt{x}+2\right)\left(x-1\right)}{\sqrt{x}+2}\)
\(\Leftrightarrow x+2\sqrt{3}=y+z+2\sqrt{yz}\)
\(\Leftrightarrow x-y-z=2\left(\sqrt{yz}-\sqrt{3}\right)\)
Do x;y;z;2 đều là các số hữu tỉ mà \(\sqrt{yz}-\sqrt{3}\) vô tỉ
Nên đẳng thức xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}x-y-z=0\\yz=3\end{matrix}\right.\)
\(\Leftrightarrow\left(x;y;z\right)=\left(4;3;1\right);\left(4;1;3\right)\)
Với x= 0 là nghiệm của pt
Với x=-1 là ngiệm của pt
Với x=1 không là nghiệm của pt
Với x khác ba già trị trên thì
Nên x thuộc Z ; x2>x
Ta có: x2+x+1 > 0 với mọi x thuộc Z nên x3 + x2 + x + 1 >x3
Mặt khác: 2x2+2x>0 nên (x+1)3>x3 + x2 + x + 1
nên (x+1)3>x3 + x2 + x + 1 >x3 khong có gt của x.
Vậy x=-1 hoặc x=0