Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)
Để \(\frac{\sqrt{x}+1}{\sqrt{x}-3}\in Z\Rightarrow\frac{4}{\sqrt{x}-3}\in Z\)
\(\Rightarrow\sqrt{x}-3\in\left(1;4;-1;-4\right)\)
\(\Rightarrow\sqrt{x}\in\left(4;7;2;-1\right)\)
\(\Rightarrow\sqrt{x}=4\Leftrightarrow x=2\)
\(4,A=x+\sqrt{x}+1\)
\(A=\left(\sqrt{x}\right)^2+2.\frac{1}{2}.\sqrt{x}+\left(\frac{1}{2}\right)^2+\frac{3}{4}\)
\(A=\left(\sqrt{x}+\frac{1}{2}\right)^2+\frac{3}{4}\)
\(\Rightarrow A\ge\frac{3}{4}.\left(\sqrt{x}+\frac{1}{2}\right)^2\ge0\)
Dấu "=" xảy ra khi :
\(\sqrt{x}+\frac{1}{2}=0\Leftrightarrow\sqrt{x}=-\frac{1}{2}\)
Vậy Min A = 3/4 khi căn x = -1/2
c, ĐKXĐ: \(x\ge0\)
\(C=\frac{3\sqrt{x}-4}{\sqrt{x}+2}=3-\frac{10}{\sqrt{x}+2}\in Z\)
\(\Leftrightarrow\sqrt{x}+2\in U_{10}=\left\{\pm1;\pm2;\pm5\right\}\)
Mà \(\sqrt{x}+2\ge2\Rightarrow...\)
d, ĐKXĐ: \(x\ge0;x\ne4\)
\(D=\frac{3-2\sqrt{x}}{\sqrt{x}-2}=-2-\frac{1}{\sqrt{x}-2}\in Z\)
\(\Leftrightarrow\sqrt{x}-2\in U_1=\left\{\pm1\right\}\)
Mà \(\sqrt{x}-2\ge-2\Rightarrow...\)
a, ĐKXĐ: \(x\ge0\)
\(A=\frac{\sqrt{x}-3}{\sqrt{x}+1}=1-\frac{4}{\sqrt{x}+1}\in Z\)
\(\Leftrightarrow\sqrt{x}+1\in U_4=\left\{\pm1;\pm2;\pm4\right\}\)
Mà \(\sqrt{x}+1\ge1\Rightarrow\sqrt{x}+1\in\left\{1;2;4\right\}\Rightarrow x\in\left\{0;1;9\right\}\)
b, ĐKXĐ: \(x\ge0;x\ne9\)
\(B=\frac{2\sqrt{x}-1}{\sqrt{x}-3}=2+\frac{5}{\sqrt{x}-3}\in Z\)
\(\Leftrightarrow\sqrt{x}-3\in U_5=\left\{\pm1;\pm5\right\}\)
Mà \(\sqrt{x}-3\ge-3\Rightarrow\sqrt{x}-3\in\left\{\pm1;5\right\}\Rightarrow x\in\left\{4;16;25\right\}\)