Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đê:\(A\inℤ\Rightarrow x-2⋮2x+1\Rightarrow2x-4⋮2x+1\Leftrightarrow\left(2x+1\right)-5⋮2x+1\)
\(\Leftrightarrow5⋮2x+1\Rightarrow2x+1\in-1;1;5;-5\Leftrightarrow x\in-1;0;2;-3\)
\(\text{Ta có: }A=x^{2005}-2006x^{2004}+2006x^{2003}-2006x^{2002}+...-2006x^2+2006x-1.\)\(=x^{2005}-\left(2005+1\right)x^{2004}+\left(2005+1\right)x^{2003}-\left(2005+1\right)x^{2002}+...-\left(2005+1\right)x^2+\left(2005+1\right)x-1\) \(\text{Mà x=2005 nên: }A=x^{2005}-x^{2005}-x^{2004}+x^{2004}+x^{2003}-x^{2003}-x^{2002}+...-x^3-x^2+x^2+x-1\)
\(=x-1=2005-1=2004\)
Áp dụng bđt |a| + |b| ≥ |a + b| ta có :
A = |2x - 2| + |2x - 2013| = |2 - 2x| + |2x - 2013| ≥ |2 - 2x + 2x - 2013| = |- 2011| = 2011
Dấu "=" xảy ra <=> (2 - 2x)(2x - 2013) ≥ 0 => 2013/2 ≥ x ≥ 1
Vậy GTNN của A là 2011 <=> 2013/2 ≥ x ≥ 1
Answer:
a) ĐK: \(x;y\ne0\)
\(\frac{1}{x}=\frac{1}{6}+\frac{3}{y}\Rightarrow6y=xy+18x\)
\(\Leftrightarrow y\left(6-x\right)+18\left(6-x\right)-108=0\)
\(\Leftrightarrow\left(18+y\right)\left(6-x\right)=108=2^2.3^3\)
Mà do x và y nguyên nên \(\left(18+y\right);\left(6-x\right)\in\left\{108\right\}\)
Ta đặt \(\hept{\begin{cases}A=6-x\\B=18+y\end{cases}}\)
Bước còn lại là lập bảng nhé! Bạn tự lập ạ, còn nêu có nhu cầu để mình lập thì nhắn cho mình.
b) \(A=\frac{2x-1}{x+1}\left(x\inℤ\right)\)
\(=\frac{2x+2-3}{x+1}\)
\(=\frac{2x+2}{x+1}-\frac{3}{x+1}\)
\(=\frac{2\left(x+1\right)}{x+1}-\frac{3}{x+1}\)
\(=2-\frac{3}{x+1}\)
Mà để biểu thức A có giá trị nguyên thì:
\(3⋮x+1\)
\(\Rightarrow x+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow x\in\left\{2;-4;0;-2\right\}\)
Bài 1. a) Tìm x, y nguyên biết 1x= 1/6+3y
b) Tìm x thuộc Z để biểu thức A= 2x-1/x+1 có giá trị nguyên
\(a,\dfrac{1}{x}=\dfrac{1}{6}+3y\Leftrightarrow6=x+18xy\Leftrightarrow x\left(18y+1\right)=6\)
Mà \(x,y\in Z\)
\(x\) | -6 | -3 | -2 | -1 | 1 | 2 | 3 | 6 |
\(18y+1\) | -1 | -2 | -3 | -6 | 6 | 3 | 2 | 1 |
\(y\) | loại | loại | loại | loại | loại | loại | loại | loại |
Vậy ko có x,y nguyên tm
\(b,A=\dfrac{2\left(x+1\right)-3}{x+1}=2-\dfrac{3}{x+1}\in Z\\ \Leftrightarrow x+1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\\ \Leftrightarrow x\in\left\{-4;-2;0;2\right\}\)
\(A=\frac{1-2x}{x+1}=\frac{-2\left(x+1\right)+3}{x+1}=-2+\frac{3}{x+1}\)
Để : \(A\inℤ\Leftrightarrow-2+\frac{1}{x+1}\inℤ\Leftrightarrow\frac{1}{x+1}\inℤ\)
\(\Leftrightarrow1⋮x+1\) hay \(x+1\inƯ\left(1\right)=\left\{-1,1\right\}\)
\(\Rightarrow x\in\left\{-2,0\right\}\)
Vậy : \(x\in\left\{-2,0\right\}\)