Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1-2x}{x+3}=\frac{-2\left(x+3\right)+7}{x+3}=-2+\frac{7}{x+3}\)
Vậy để A nguyên thì: \(x+3\inƯ\left(7\right)\)
Mà Ư(7)={1;-1;7;-7}
=>x+3={1;-1;7;-7}
Ta có bảng sau:
x+3 | 1 | -1 | 7 | -7 |
x | -2 | -4 | 4 | -10 |
Vậy x={-10;-4;-2;4}
Ta có:
\(A=\frac{1-2x}{x+3}=\frac{7-2x-6}{x+3}=\frac{7-2.\left(x+3\right)}{x+3}=\frac{7}{x+3}-\frac{2.\left(x+3\right)}{x+3}=\frac{7}{x+3}-2\)
Để \(A\in Z\Leftrightarrow\frac{7}{x+3}\in Z\)
\(\Rightarrow x+3\inƯ\left(7\right)\)
\(\Rightarrow x+3\in\left\{1;-1;7;-7\right\}\)
\(\Rightarrow x\in\left\{-2;-4;4;-10\right\}\)
Các giá trị A nguyên tương ứng là: 5; -9; -1; -3
Vậy \(\begin{cases}x=-2\\A=5\end{cases}\); \(\begin{cases}x=-4\\A=-9\end{cases}\); \(\begin{cases}x=4\\A=-1\end{cases}\); \(\begin{cases}x=-10\\A=-3\end{cases}\)
a) Đk: x#2 (*)
Với (*), A=(x - 2 + 5)/(x - 2)= 1 + 5/(x - 2)
A nguyên <=> x-2 thuộc Ư(5)={-5;-1;1;5}
=> S={-3;1;3;7}
b) Đk: x#-3
Với (*), A= (- 2x - 6 + 7)/(x + 3) = -2 + 7/(x+3)
A nguyên <=> x + 3 thuộc Ư(7)={1;-1;7;-7}
=> S = {-2;- 4;4;-10}
đê:\(A\inℤ\Rightarrow x-2⋮2x+1\Rightarrow2x-4⋮2x+1\Leftrightarrow\left(2x+1\right)-5⋮2x+1\)
\(\Leftrightarrow5⋮2x+1\Rightarrow2x+1\in-1;1;5;-5\Leftrightarrow x\in-1;0;2;-3\)
Để (x + 1)/(2x + 1) ∈ Z thì (x + 1) ⋮ (2x + 1)
⇒ 2(x + 1) ⋮ (2x + 1)
⇒ (2x + 2) ⋮ (2x + 1)
⇒ (2x + 1 + 1) ⋮ (2x + 1)
Để 2(x + 1) ⋮ (2x + 1) thì 1 (2x + 1)
⇒ 2x + 1 ∈ Ư(1)
⇒ 2x + 1 ∈ {-1; 1}
⇒ 2x ∈ {-2; 0}
⇒ x ∈ {-1; 0}