Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) A = \(\frac{3}{x-1}\)
=> x-1 \(\in\) Ư(3) = {-1,-3,1,3}
Ta có bảng :
x-1 | -1 | -3 | 1 | 3 |
x | 0 (loại) | -2 | 2 | 4 |
Vậy x = { -2,2,4 }
+) Bài B đề chưa rõ
+) C = \(\frac{11}{3x-1}\)
=> 3x-1 \(\in\) Ư(11) = { -1,-11,1,11 }
Ta có bảng :
3x-1 | -1 | -11 | 1 | 11 |
x | 0 (loại) | \(\frac{-10}{3}\) (loại) | \(\frac{2}{3}\) (loại) | 4 |
Vậy x = 4
+) M = \(\frac{x+2}{x-1}\)
Ta có: \(\frac{x+2}{x-1}=\frac{x-1+3}{x-1}=\frac{x-1}{x-1}+\frac{3}{x-1}=1+\frac{3}{x-1}\)
=> x-1 \(\in\) Ư(3) = {-1,-3,1,3}
Tiếp theo như bài A mình đã làm
E = \(\frac{x+7}{x+2}=\frac{x+2+5}{x+2}=\frac{x+2}{x+2}+\frac{5}{x+2}=1+\frac{5}{x+2}\)
=> x+2 \(\in\) Ư(5) = {-1,-5,1,5 }
Ta có bảng :
x+2 | -1 | -5 | 1 | 5 |
x | -3 | -7 | -1 | 3 |
Vậy x = { -7,-3,-1,3 }
Theo đề ra, ta có: \(x\inℤ\Leftrightarrow2x\inℤ\)
Ta có: \(2x+\frac{8}{5}-\frac{x}{5}=2x+\frac{\left(8-x\right)}{5}\)
Để \(L\inℤ\Leftrightarrow\frac{8-x}{5}\inℤ\)
\(\Leftrightarrow\left(8-x\right)⋮5\)
\(\Leftrightarrow\left(8-x\right)\in B\left(5\right)=\left\{x;\left|x=5g\right|g\inℤ\right\}\)
\(\Leftrightarrow\left(8-x\right)=5g\)
\(\Leftrightarrow x=8-5g\left(g\inℤ\right)\)
CÓ (2n+3)⋮(3n+2)
=>3.(2n+3)⋮(3n+2)
=>(6n+9)⋮(3n+2)
có 6n+9= 2.(3n+2)+5
Mà 2.(3n+2)⋮(3n+2) Để (6n+9)⋮(3n+2) thì 5 ⋮(3n+2)
=> (3n+2)∈ ư (5)={1;-1;5;-5}
Vói 3n+2=1 => n=-1/3 (loại)
3n+2=-1 => n=-1 (TM)
3n+2=5 => n= 1 (TM)
3n+2=-5 => n= 1/3 (loại)
Vậy n∈{1;-1} thì (2n+3)⋮(3n+2)
=> 2n - 7 chia hết cho n - 5
=> 2n - 10 + 3 chia hết cho n - 5
=> 2(n - 5) + 3 chia hết cho n - 5
Vì 2(n - 5) chia hết cho n - 5
=> 3 chia hết cho n - 5
=> n - 5 thuộc Ư(3)
=> n - 5 thuộc {1; -1; 3; -3}
=> n thuộc {6; 4; 8; 2}
Ta có: \(\frac{2x^2+10x-11}{x+5}=\frac{2x\left(x+5\right)-11}{x+5}=2x-\frac{11}{x+5}\)
Để \(\frac{2x^2+10x-11}{x+5}\in Z\)<=> \(11⋮x+5\)
<=> \(x+5\)\(\in\)Ư(11) = {1; -1; 11; -11}
Lập bảng :
x + 5 | 1 | -1 | 11 | -11 |
x | 4 | -6 | 6 | -16 |
Vậy ...
\(\text{Ta có :}\)
\(\frac{2x^2+10x-11}{x+5}=\frac{2x\left(x+5\right)-11}{x+5}\)
\(=2x-\frac{11}{x+5}\)
\(\text{Để biểu thức có giá trị nguyên thì }\frac{11}{x+5}\text{cũng phải nguyên (vì 2x chắc chắn là nguyên)}\)
\(\Rightarrow11⋮x+5\Rightarrow x+5\inƯ_{\left(11\right)}=\left\{\pm1;\pm11\right\}\)
\(\Rightarrow x\in\left\{-16;-6;-4;6\right\}\)
\(B=\frac{1}{2\left(x-1\right)^2}+3\)[ĐKXĐ:2(x-1)^2>0]
Để B đạt GTLN thì 2(x-1)^2 đạt GTNN
\(Tacó:2\left(x-1\right)^2\ge0\)do đk nên \(2\left(x-1\right)^2\ge1\)
Đẳng thức xảy ra :\(< =>\left(x-1\right)^2=\frac{1}{2}< =>x^2-x+\frac{1}{2}=0\)
Do PT trên vô nghiệm nên B không thể có GTLN
\(B=\frac{5}{2x+1}\)
=> 2x+1 \(\in\) Ư(5) = {-1,-5,1,5}
Ta có bảng :
Vậy x = {-3,-1,3}