Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để biểu thức nguyên
\(\Leftrightarrow2x+3⋮x-1\)
\(\Leftrightarrow2.\left(x-1\right)+5⋮x-1\)
Mà \(2.\left(x-1\right)⋮x-1\)
\(\Rightarrow5⋮x-1\)
Tự tìm x
1.
a. Gọi p là một ước chung của 12n + 1 và 30n + 2. Ta có:
12n + 1 chia hết cho d và 30n + 2 chia hết cho d
=> 5 ( 12n + 1 ) - 2 ( 30n + 2 ) chia hết cho d
=> 60n + 5 - 60n + 4 chia hết cho d
=> 1 chia hết cho d. Vậy d =1 hoặc d = -1
Vậy \(\frac{12n+1}{30n+2}\)là phân số tối giản.
Ta có :
\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
= \(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
= \(1-\frac{1}{100}=\frac{99}{100}< 1\)
Vậy \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\) \(< 1\)
a. Vì A thuộc Z
\(\Rightarrow x-2\in\left\{-5;-1;1;5\right\}\)
\(\Rightarrow x\in\left\{-3;1;3;7\right\}\)( tm x thuộc Z )
b. Ta có : \(B=\frac{x+2}{x-3}=\frac{x-3+5}{x-3}=1+\frac{5}{x-3}\)
Vì B thuộc Z nên 5 / x - 3 thuộc Z
\(\Rightarrow x-3\in\left\{-5;-1;1;5\right\}\)
\(\Rightarrow x\in\left\{-2;2;4;8\right\}\)( tm x thuộc Z )
c. Ta có : \(C=\frac{x^2-x}{x+1}=\frac{x^2+x-2x+2-2}{x+1}=\frac{x\left(x+1\right)-2x+2-2}{x+1}\)
\(=x-2-\frac{2}{x+1}\)
Vi C thuộc Z nên 2 / x + 1 thuộc Z
\(\Rightarrow x+1\in\left\{-2;-1;1;2\right\}\)
\(\Rightarrow x\in\left\{-3;-2;0;1\right\}\) ( tm x thuộc Z )
a) Để M thuộc Z <=> \(x+2\in B\left(3\right)=\left\{0;3;-3;6;-6;....\right\}\)
<=> x = B(3) - 2
b) Để N thuộc Z <=> 7 chia hết cho x-1
<=> \(x-1\inƯ\left(7\right)=\left\{1;7;-1;-7\right\}\)
Nếu x - 2= 1 thì x = 3
Nếu x - 2 = -1 thì x = 1
Nếu x - 2 = 7 thì x = 9
Nếu x - 2 = -7 thì x = -5
Vậy x = {-5;1;3;9}
a) Để M thuộc Z <=> x+2∈B(3)={0;3;−3;6;−6;....}
<=> x = B(3) - 2
b) Để N thuộc Z <=> 7 chia hết cho x-1
<=> x−1∈Ư(7)={1;7;−1;−7}
Nếu x - 2= 1 thì x = 3
Nếu x - 2 = -1 thì x = 1
Nếu x - 2 = 7 thì x = 9
Nếu x - 2 = -7 thì x = -5
Vậy x = {-5;1;3;9}
a, Để \(x\in Z\) thì \(13⋮x-5\)\(\Rightarrow x-5\inƯ\left(13\right)=\left\{1;-1;13;-13\right\}\)\(\Rightarrow x\in\left\{6;4;18;-6\right\}\)
b,Để\(\frac{x+3}{x-2}\in Z\)\(\Rightarrow x+3⋮x-2\Leftrightarrow x-2+5⋮x-2\)\(\Rightarrow5⋮x-2\)\(\Rightarrow x-2\inƯ\left(5\right)\)
Tự giải nốt giống câu a, nhé bn.
~Study well~
a) \(y=\frac{2x+7}{x-4}=\frac{2x-8+15}{x-4}=2+\frac{15}{x-4}\inℤ\Leftrightarrow\frac{15}{x-4}\inℤ\)mà \(x\inℤ\)nên \(x-4\)là ước của \(15\).
Suy ra \(x-4\in\left\{-15,-5,-3,-1,1,3,5,15\right\}\Leftrightarrow x\in\left\{-11,-1,1,3,5,7,9,19\right\}\).
b) \(y=\frac{4x+11}{2x-3}=\frac{4x-6+17}{2x-3}=2+\frac{17}{2x-3}\inℤ\Leftrightarrow\frac{17}{2x-3}\inℤ\)mà \(x\inℤ\)nên \(2x-3\)là ước của \(17\).
Suy ra \(2x-3\in\left\{-17,-1,1,17\right\}\Leftrightarrow x\in\left\{-7,1,2,10\right\}\).
\(1)\)
Để \(\frac{13}{a-1}\) là số nguyên thì \(13⋮\left(a-1\right)\)\(\Rightarrow\)\(\left(a-1\right)\inƯ\left(13\right)\)
Mà \(Ư\left(13\right)=\left\{1;-1;13;-13\right\}\)
Suy ra :
\(a-1\) | \(1\) | \(-1\) | \(13\) | \(-13\) |
\(a\) | \(2\) | \(0\) | \(14\) | \(-12\) |
Vậy \(a\in\left\{2;0;14;-12\right\}\)
\(2)\)
Ta có :
\(\frac{x}{5}=\frac{y}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{5}=\frac{y}{3}=\frac{x+y}{5+3}=\frac{16}{8}=2\)
Do đó :
\(\frac{x}{5}=2\Rightarrow x=2.5=10\)
\(\frac{y}{3}=2\Rightarrow y=2.3=6\)
Vậy x=10 và y=6
Đê B nguyên thì -4x+3 phải chia hết cho x+2
Do đó ta có:\(\frac{-4x+3}{x+2}=\frac{-4\left(x+2\right)+11}{x+2}=-4+\frac{11}{x+2}\)
Đẻ B nguyên thì \(11⋮\left(x+2\right)\) hay \(\left(x+2\right)\inƯ\left(11\right)\)
Vậy Ư(11) là:[1,-1,11,-11]
Do đó ta được bảng sau:
Vậy để B nguyên thì x=[-13;-3;-1;9]