Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,để A có gt nguyên <=>\(\sqrt[]{x}-5\inƯ\left(9\right)\)
\(\sqrt[]{x}-5\in\) <=>{1, -1, 3, -3, 9, -9}
Ta có bảng sau
\(\sqrt[]{x-5}\) | -1 | 1 | -3 | 3 | 9 | -9 |
\(\sqrt[]{x}\) | 4 | 6 | 2 | 8 | 14 | -4 |
\(x\) | 16 | 36 | 4 | 64 | 196 | không có gt thỏa mãn |
Để A = \(\frac{13}{17-x}\)đtạ GTLN thì 17- x phải lớn nhất thì17 -x =1 => x = 16
k nha mình bị trừ điểm hỏi đáp
a) Để A = 0 thì \(x-7=0\Leftrightarrow x=7\)( thỏa mãn ĐKXĐ )
Để A > 0 thì có 2 trường hợp :
+) TH1 : \(\hept{\begin{cases}x-7>0\\x+4>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>7\\x>-4\end{cases}\Leftrightarrow}x>7}\)
+) TH2: \(\hept{\begin{cases}x-7< 0\\x+4< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 7\\x< -4\end{cases}}}\Leftrightarrow x< -4\)
Để A < 0 thì có 2 trường hợp :
+) TH1: \(\hept{\begin{cases}x-7>0\\x+4< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>7\\x< -4\end{cases}\Leftrightarrow}7< x< -4\left(\text{vô lí}\right)}\)
+) TH2: \(\hept{\begin{cases}x-7< 0\\x+4>0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 7\\x>-4\end{cases}\Leftrightarrow}-4< x< 7}\)
b) Để A thuộc Z thì x -7 ⋮ x + 4
<=> x + 4 - 11 ⋮ x + 4
Vì x + 4 ⋮ x + 4
=> 11 ⋮ x + 4
=> x + 4 thuộc Ư(11) = { 1; 11; -1; -11 }
=> x thuộc { -3; 7; -5; -15 }
Vậy...........
a) \(A=\frac{x+3}{x-2}=\frac{x-2+5}{x-2}=1+\frac{5}{x-2}\)
để A \(\in\) Z thì x - 2 là ước của 5.
=> x – 2 \(\in\left\{\pm1;\pm5\right\}\)
* x = 3 => A = 6
* x = 7 => A = 2
* x = 1 => A = - 4
* x = -3 => A = 0
b) \(A=\frac{1-2x}{x+3}=\frac{7-2x-6}{x+3}=\frac{7-2\left(x+3\right)}{x+3}=\frac{7}{x+3}-2\)
- 2 để A \(\in\) Z thì x + 3 là ước của7.
=> x + 3 \(\in\left\{\pm1;\pm7\right\}\)
* x = -2 => A = 5
* x = 4 => A = -1
* x = -4 => A = - 9
* x = -10 => A = -3 .
a) có nghĩa khi \(x-1\ne0\Rightarrow x\ne1\)
b)\(f\left(7\right)=\frac{7+2}{7-1}=\frac{9}{6}\)
c)\(f\left(x\right)=\frac{x+2}{x-1}=\frac{1}{4}\Leftrightarrow x+2=4x-4\)
\(\Leftrightarrow-3x=-6\Leftrightarrow x=2\)
e)\(f\left(x\right)>1\Rightarrow\frac{x+2}{x-1}-1>0\)
\(\Rightarrow\frac{3}{x-1}>0\) thấy 3>0 nên x-1>0 =>x>1
Bài 2:
a)\(P=9-2\left|x-3\right|\)
Thấy: \(\left|x-3\right|\ge0\)\(\Rightarrow2\left|x-3\right|\ge0\)
\(\Rightarrow-2\left|x-3\right|\le0\)
\(\Rightarrow9-2\left|x-3\right|\le9\)
Khi x=3
b)Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(Q=\left|x-2\right|+\left|x-8\right|\)
\(=\left|x-2\right|+\left|8-x\right|\)
\(\ge\left|x-2+8-x\right|=6\)
Khi \(2\le x\le8\)