\(A=\frac{7}{x^2-x+1}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2021

Để \(A\inℤ\)thì \(7⋮x^2-x+1\)(1)

Vì \(x^2-x+1=x^2-2x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

Mà \(\left(x-\frac{1}{2}\right)^2\ge0\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\Leftrightarrow x^2-x+1\ge\frac{3}{4}>0\)(2)

Từ (1) và (2) \(\Rightarrow\) \(x^2-x+1\in\left\{1;7\right\}\)

Trường hợp \(x^2-x+1=1\Leftrightarrow x^2-x=0\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

Trường hợp \(x^2-x+1=7\Leftrightarrow x^2-x-6=0\Leftrightarrow x^2-3x+2x-6=0\Leftrightarrow x\left(x-3\right)+2\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)

Vậy để \(A\inℤ\)thì \(x\in\left\{-2;0;1;3\right\}\)

5 tháng 8 2018

\(a,ĐKXĐ:x\ne0;x\ne1\)

\(A=\frac{x^2+x}{x^2-2x+1}:\left(\frac{x+1}{x}-\frac{1}{1-x}+\frac{2-x^2}{x^2-x}\right)\)

\(A=\frac{x^2+x}{\left(x-1\right)^2}:\left[\frac{\left(x+1\right)\left(x-1\right)}{x\left(x-1\right)}+\frac{1}{x\left(x-1\right)}+\frac{2-x^2}{x^2-x}\right]\)

\(A=\frac{x^2+x}{\left(x-1\right)^2}:\left(\frac{x^2-1+1+2-x^2}{x^2-x}\right)\)

\(A=\frac{x^2+x}{\left(x-1\right)^2}:\frac{2}{x\left(x-1\right)}\)

\(A=\frac{x\left(x+1\right)}{\left(x-1\right)^2}.\frac{x\left(x-1\right)}{2}\)

\(A=\frac{x^2\left(x+1\right)}{2\left(x-1\right)}=\frac{x^3+x^2}{2x-2}\)

3 tháng 8 2017

a ) \(A=\frac{1}{x-2}-\frac{1}{x+2}+\frac{x^2+4}{x^2-4}\)

\(=\frac{x+2-\left(x-2\right)+x^2+4}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{x^2+8}{x^2-4}\)

b ) \(A=\frac{x^2+8}{x^2-4}=\frac{\left(x^2-4\right)+12}{x^2-4}=1+\frac{12}{x^2-4}\)

Để \(A\in Z\Leftrightarrow12⋮x^2-4\)

\(x^2-4\inƯ\left(12\right)=\left\{-12;-6;-4;-2;-1;1;2;4;6;12\right\}\)

Xét từng thường hợp của x ta tìm đc : \(x=\left\{-4;0;4\right\}\)

3 tháng 8 2017

\(\frac{1}{x-2}-\frac{1}{x+2}+\frac{x^2+4}{x^2-4}\)

\(\frac{x+2}{\left(x-2\right)\left(x+2\right)}-\frac{x-2}{\left(x+2\right)\left(x-2\right)}+\frac{x^2+2^2}{x^2-2^2}\)

\(\frac{4}{\left(x+2\right)\left(x-2\right)}+\frac{x^2+2^2}{x^2-2^2}\)

=\(\frac{4}{x^2-2^2}+\frac{x^2+2^2}{x^2-2^2}\)

\(\frac{4+x^2+2^2}{x^2-2^2}\)

25 tháng 6 2017

\(\frac{\sqrt{x}+3}{\sqrt{x}+1}=1+\frac{2}{\sqrt{x}+1}\in Z\Rightarrow\frac{2}{\sqrt{x}+1}\in Z\)

giả sử \(\sqrt{x}\)là số vô tỉ=>\(\sqrt{x}+1\)là số vô tỉ 

=>\(\frac{2}{\sqrt{x}+1}\)là số vô tỉ(vô lí)

với \(\sqrt{x}\in Q\)=>\(\sqrt{x}\in Z\Rightarrow\sqrt{x}+1\in Z\)

mà \(\sqrt{x}+1\ge1\)

Vậy x=0;1 thì \(A\in Z\)

=>\(\sqrt{x}+1\in\left\{1;2\right\}\Rightarrow x\in\left\{0;1\right\}\)

25 tháng 6 2017

Đặt \(\sqrt{x}=t\)

 => t \(\ge\) 0

\(\Rightarrow\)Để A thuộc Z thì:

\(\frac{t+3}{t+1}\in Z\)

\(=>\left(\frac{t+3}{t+1}-1\right)\in Z\)

\(\frac{2}{t+1}\in Z\)

=> \(2⋮\left(t+1\right)\Rightarrow\left(t+1\right)\inƯ\left(2\right)\)

\(\Rightarrow\left(t+1\right)\in\left\{2;-2;1;-1\right\}\)

=> \(t\in\left\{1;-3;0;-2\right\}\)

Vì \(t\ge0\)nên chỉ có t = 1; t = 0 là thoả mãn điều kiện của t

Vì \(t=\sqrt{x}\)nên :

\(x\in\left\{1;0\right\}\)

Vậy,\(x\in\left\{1;0\right\}\)

 Để biểu thức A thuộc Z thì : \(x-2⋮4\)

                      => \(x-2\)là \(B\left(4\right)\)

                      => \(x-2=4k\)\(\left(k\inℤ\right)\)

                      => \(x=4k+2\)\(\left(k\inℤ\right)\)

            Vậy với mọi \(x=4k+2\)thì A thuộc Z

27 tháng 4 2022

để x-2/4 thuộc z thì 4:x-2 → x-2 thuộc u của 4

<=> x-2 thuộc 1 -1 -2 2 

<=> x thuộc 3 1 0 4

vậy x thuộc 3 1 0 4

18 tháng 4 2019

\(A=\frac{2x^2+1}{x-1}=\frac{2\left(x^2-1\right)+3}{x-1}=\frac{2\left(x^2-1\right)}{x-1}+\frac{3}{x-1}\)\(A=\frac{2\left(x-1\right)\left(x+1\right)}{x-1}+\frac{3}{x-1}=2\left(x+1\right)+\frac{3}{x-1}\)

x là số nguyên thì 2(x+1) là số nguyên. Để A là số nguyên thì     3 :(x-1)   phải là số nguyên. Điều này xẩy ra khi và chỉ khi x khác 1 và (x-1) là ước số nguyên của 3. 

-Trường hợp 1:  x-1= -1 , ta có x=0

-Trường hợp 2:   x-1= 1, ta có x=2

-Trường hợp 3 :   x-1=-5, ta có x=-4

-Trường hợp 4:  x-1=5, ta có x=6  .                        TRẢ LỜI: Có 4 giá trị x=0, x=2, x=-4, x=6  thỏa mãn  A là số nguyên