Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a, |x-1| -x +1=0
|x-1| = 0-1+x
|x-1| = -1 + x
\(\orbr{\begin{cases}x-1=-1+x\\x-1=1-x\end{cases}}\)
\(\orbr{\begin{cases}x=-1+x+1\\x=1-x+1\end{cases}}\)
\(\orbr{\begin{cases}x=x\\x=2-x\end{cases}}\)
x = 2-x
2x = 2
x = 2:2
x=1
b, |2-x| -2 = x
|2-x| = x+2
\(\orbr{\begin{cases}2-x=x+2\\2-x=2-x\end{cases}}\)
2-x = x+2
x+x = 2-2
2x = 0
x = 0
kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
b) A=\(\frac{5x-2}{x-3}=\frac{5x-15+13}{x-3}=\frac{5x-15}{x-3}+\frac{13}{x-3}=\frac{5\left(x-3\right)}{x-3}+\frac{13}{x-3}=5+\frac{13}{x-3}\)
Để A thuộc Z thì \(5+\frac{13}{x-3}\in Z\)
=>13 chia hết cho x-3
=>x-3 \(\in\)Ư(13)={-1;1;-13;13}
x-3=-1 x-3=1 x-3 =-13 x-3=13
x =-1+3 x =1+3 x =-13+3 x =13+3
x=2 x =4 x=-10 x=16
Vậy x=2;4;-10;16 thì A thuộc Z
c)B=\(\frac{6x-1}{3x+2}=\frac{6x+4-5}{3x+2}=\frac{6x+4}{3x+2}+\frac{-5}{3x+2}=\frac{2\left(3x+2\right)}{3x+2}+\frac{-5}{3x+2}=2+\frac{-5}{3x+2}\)
Để B thuộc Z thì \(2+\frac{-5}{3x+2}\in Z\)
=>-5 chia hết cho 3x+2
=>3x+2\(\in\)Ư(-5)={-1;1;-5;5}
3x+2=-1 3x+2=1 3x+2=-5 3x+2=5
3x =-3 3x =-1 3x =-7 3x =3
x =-1 x =-1/3 x =-7/3 x =1
Vậy x=-1;-1/3;-7/3;1 thì B thuộc Z
d) C=\(\frac{10x}{5x-2}=\frac{10x-4+4}{5x-2}=\frac{10-4}{5x-2}+\frac{4}{5x-2}=\frac{2\left(5x-2\right)}{5x-2}+\frac{4}{5x-2}=2+\frac{4}{5x-2}\)
Để C thuộc Z thì \(2+\frac{4}{5x-2}\in Z\)
=> 4 chia hết cho 5x-2
=>5x-2\(\in\)Ư(4)={-1;1;-2;2;-4;4}
5x-2=-1 5x-2=1 5x-2=2 5x-2=-2 5x-2=4 5x-2=-4
bạn tự giải tìm x như các bài trên nhé
d) bạn ghi đề mjk ko hjeu
e)E=\(\frac{4x+5}{x-3}=\frac{4x-12+17}{x-3}=\frac{4x-12}{x-3}+\frac{17}{x-3}=\frac{4\left(x-3\right)}{x-3}+\frac{17}{x-3}=4+\frac{17}{x-3}\)
Để E thuộc Z thì\(4+\frac{17}{x-3}\in Z\)
=>17 chia hết cho x-3
=>x-3 \(\in\)Ư(17)={1;-1;17;-17}
x-3=1 x-3=-1 x-3=17 x-3=-17
bạn tự giải tìm x nhé
điều cuối cùng cho mjk ****
bài 2: (x-3).(y+2) = -5
Vì x, y \(\in\)Z => x-3 \(\in\)Ư(-5) = {5;-5;1;-1}
Ta có bảng:
x-3 | 5 | -5 | -1 | 1 |
y+2 | 1 | -1 | -5 | 5 |
x | 8 | -2 | 2 | 4 |
y | -1 | -3 | -7 | 3 |
bài 3: a(a+2)<0
TH1 : \(\orbr{\begin{cases}a< 0\\a+2>0\end{cases}}\)=>\(\orbr{\begin{cases}a< 0\\a>-2\end{cases}}\)=> -2<a<0 ( TM)
TH2: \(\orbr{\begin{cases}a>0\\a+2< 0\end{cases}}\Rightarrow\orbr{\begin{cases}a>0\\a< -2\end{cases}}\Rightarrow loại\)
Vậy -2<a<0
Bài 5: \(\left(x^2-1\right)\left(x^2-4\right)< 0\)
TH 1 : \(\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>1\\x< 2\end{cases}}\)\(\Rightarrow\)1 < a < 2
TH 2: \(\hept{\begin{cases}x^2-1< 0\\x^2-4>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2< 1\\x^2>4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< 1\\x>2\end{cases}}\)\(\Rightarrow\)loại
Vậy 1<a<2
a) \(\left(x+5\right)\left(3x-12\right)>0\)
\(\left(x+5\right).3.\left(x-4\right)>0\)
\(\Rightarrow\hept{\begin{cases}x+5>0\\x-4>0\end{cases}}\) hoặc \(\hept{\begin{cases}x+5< 0\\x-4< 0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x>-5\\x>4\end{cases}}\) hoặc \(\hept{\begin{cases}x< -5\\x< 4\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x>4\\x< -5\end{cases}}\)
vậy...
a) |x - 2| + 2 - x = 0
⇔|x - 2| = x - 2
Vì |x - 2| ≥ 0 nên
⇒ x - 2 ≥ 0
⇒ x ≥ 2
b) |5 - x| + 5 = x
⇔|5 - x| = x - 5
⇔|5 - x| = - (5 - x)
Vì |5 - x| ≥ 0 nên
⇒ - (5 - x) ≥ 0
⇒ 5 - x ≤ 0
⇒ 5 ≤ x
c) |x - 5| = |9 - x|
Vì |x - 5| ≥ 0 và |9 - x| ≥ 0
⇒ x - 5 = 9 - x
⇔ 2x = 9 + 5
⇔ 2x = 14
⇔ x = 7
c.
\(\left|x-5\right|=\left|9-x\right|\\ \Rightarrow\left[{}\begin{matrix}x-5=9-x\\x-5=x-9\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}2x=14\\2x=-4\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=7\\x=-2\end{matrix}\right.\)
Caau khac TT!
\(a,\left(x+17\right).\left(5-x\right)=0\)
<=>\(\orbr{\begin{cases}x+17=0\\5-x=0\end{cases}}\)
<=>\(\orbr{\begin{cases}x=-17\\x=5\end{cases}}\)
\(b,x^2+4.\left(-2\right)=9\)
<=>\(x^2-8=9\)
<=>\(x^2=17\)
<=>\(x=\sqrt{17}\)
a)\(\left(x+17\right)\left(5-x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+17=0\\5-x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-17\\x=5\end{cases}}}\)
vậy x=-17 hoặc x=5
b) \(x^2+4.\left(-2\right)=9\)
\(x^2+\left(-8\right)=9\)
\(x^2=17\)
\(\Rightarrow x=\sqrt{17}\)
c)\(0< |x-3|< 5\)
\(\Rightarrow|x-3|=1=2=3=4\)
\(th1\orbr{\begin{cases}x-3=1\\x-3=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=4\\x=2\end{cases}}}\)
\(th2\orbr{\begin{cases}x-3=2\\x-3=-2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=1\end{cases}}}\)
\(th3\orbr{\begin{cases}x-3=3\\x-3=-3\end{cases}\Leftrightarrow\orbr{\begin{cases}x=6\\x=0\end{cases}}}\)
\(th4\orbr{\begin{cases}x-3=4\\x-3=-4\end{cases}\Leftrightarrow\orbr{\begin{cases}x=7\\x=-1\end{cases}}}\)
vậy...
Ta có : |x - 2| + 2 - x = 0
=> |x - 2| = x - 2
=> $$
$$
=> 2x = 4
=> x = 2
Ta có : |x - 2| + 2 - x = 0
=> |x - 2| = x - 2
=> \(\orbr{\begin{cases}x-2=x-2\left(\forall x\in Z\right)\\x-2=2-x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=x-2\left(\forall x\in Z\right)\\x+x=2+2\end{cases}}\)
=> 2x = 4
=> x = 2