Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
c/ \(\left(2017-\dfrac{5}{181}+\dfrac{1}{50}\right)-\left(4+\dfrac{3}{181}-\dfrac{3}{50}\right)-\left(1-\dfrac{8}{181}+\dfrac{3}{50}\right)\)
\(=2017-\dfrac{5}{181}+\dfrac{1}{50}-4-\dfrac{3}{181}+\dfrac{3}{50}-1+\dfrac{8}{181}-\dfrac{3}{50}\)
\(=2012+\dfrac{1}{50}=2012,02\)
d/ \(1-\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}-\dfrac{1}{3\cdot4}-...-\dfrac{1}{99\cdot100}\)
\(=1-\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\right)\)
\(=1-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(=1-\left(1-\dfrac{1}{100}\right)=1-1+\dfrac{1}{100}=\dfrac{1}{100}\)
a, \(B=\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{27.30}.\)
\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{27}-\dfrac{1}{30}.\)
\(=1+\left(\dfrac{1}{4}-\dfrac{1}{4}\right)+\left(\dfrac{1}{7}+\dfrac{1}{7}\right)+...+\left(\dfrac{1}{27}-\dfrac{1}{27}\right)-\dfrac{1}{30}.\)
\(=1+0+0+...+0-\dfrac{1}{30}.\)
\(=1-\dfrac{1}{30}=\dfrac{29}{30}.\)
Vậy \(B=\dfrac{29}{30}.\)
b, \(B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+\dfrac{1}{8^2}.\)
\(=\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+\dfrac{1}{5.5}+\dfrac{1}{6.6}+\dfrac{1}{7.7}+\dfrac{1}{8.8}.\)
\(< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}.\)
\(< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}.\)
\(< 1+\left(\dfrac{1}{2}-\dfrac{1}{2}\right)+\left(\dfrac{1}{3}-\dfrac{1}{3}\right)+\left(\dfrac{1}{4}-\dfrac{1}{4}\right)+\left(\dfrac{1}{5}-\dfrac{1}{5}\right)+\left(\dfrac{1}{6}-\dfrac{1}{6}\right)+\left(\dfrac{1}{7}-\dfrac{1}{7}\right)-\dfrac{1}{8}.\)
\(< 1+0+0+0+0+0+0-\dfrac{1}{8}.\)
\(< 1-\dfrac{1}{8}=\dfrac{7}{8}< 1.\)
\(\Rightarrow B< \dfrac{7}{8}< 1.\)
\(\Rightarrow B< 1\left(đpcm\right).\)
~ Chúc bn học tốt!!! ~
Bài mik đúng thì nhớ tick mik nha!!! ^ - ^
Mình có đáp án thế này nha:
Ta thấy ước chung của 8 và 5 là 40 nên
\(\dfrac{-3}{8}\) = \(\dfrac{\left(-3\right).5}{8.5}\) = \(\dfrac{-15}{40}\)
\(\dfrac{-2}{5}\) = \(\dfrac{\left(-2\right).8}{5.8}\) = \(\dfrac{-16}{40}\)
Do -16 < -15 nên \(\dfrac{-15}{40}\) > \(\dfrac{-16}{40}\)
=> \(\dfrac{-3}{8}\) > \(\dfrac{-2}{5}\)
Vậy ta đưa ra kết luận: ngoài cách xét hai tích chéo của phân số thì ta có thể sử dụng tính chất cơ bản của phân số để so sánh hai phân số
Đây là ý kiến của mình, nếu sai thì hãy bình luận nha.
Xin cảm ơn
A\(=\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}+\dfrac{1}{110}+\dfrac{1}{132}\)
A=\(\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}+\dfrac{1}{10.11}+\dfrac{1}{11.12}\)
A=\(\dfrac{1}{5}-\dfrac{1}{12}\)
A=\(\dfrac{12}{60}-\dfrac{5}{60}\)
A=\(\dfrac{7}{60}\)
\(A=\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}+\dfrac{1}{110}+\dfrac{1}{132}\)
\(A=\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+...+\dfrac{1}{11.12}\)
\(A=\dfrac{1}{5}-\dfrac{1}{12}\)
\(A=\dfrac{7}{60}\)
\(C=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2013.2015}\)
\(C=\frac{1}{2}\left(1-\frac{1}{3}\right)+\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}\right)+\frac{1}{2}\left(\frac{1}{5}-\frac{1}{7}\right)+...+\frac{1}{2}\left(\frac{1}{2013}-\frac{1}{2015}\right)\)
\(C=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2013}-\frac{1}{2015}\right)\)
\(C=\frac{1}{2}\left(1-\frac{1}{2015}\right)\)
\(C=\frac{1}{2}.\frac{2014}{2015}=\frac{1007}{2015}\)
a)0,5-|x-3,5|
Vì |x-3,5|\(\ge0\)
Do đó 0,5-|x-3,5|\(\ge0,5\)
Dấu = xảy ra khi x-3,5=0
x=3,5
Vậy Max A=0,5 khi x=3,5
Mỏi cổ quá khi đọc đề bài của bn nên mk làm câu a thôi
Vậy
c) \(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{2015}\right)=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{2014}{2015}\)
\(=\frac{1.2.3.4...2014}{2.3.4.5...2015}=\frac{\left(1.2.3.4...2014\right)}{\left(2.3.4.5...2014\right).2015}=\frac{1}{2015}\)
A) x thuộc { -9, -8, -7, ...,0,... 9}
B) x=6
a) | x - 5 | < 5
=> \(\left[\begin{matrix}x - 5\:=5\\x\:-5\:=-5\end{matrix}\right.\)
=> \(\left[\begin{matrix}x=10\\x\:=0\end{matrix}\right.\)